
Chapter 12

Distance Oracles

In this Chapter we discuss the data structure version of the shortest paths
problem in planar graphs. We will show ways to preprocess a planar graph to
produce representations that support efficient vertex-to-vertex distance queries.
Such a representation is called a distance oracle. A good distance oracles requires
small space, answers queries quickly, and can be constructed quickly. We shall
show different data structures achieving different tradeoffs between space and
query time. There is no known lower bound against an oracle with O(n) space
and construction time that can answer distance queries exactly in O(1) time.
In Section 12.1 we describe, for any ε > 0, an oracle for undirected plane graphs
with O(nε−1 log n) space and O(nε−1 log2 n) construction time, that returns a
(1 + ε)-multiplicative approximation for the distance between any two vertices
in the graph. In Section 12.2 we describe an exact distance oracle for directed
plane graphs with Õ(n) space and construction time, and Õ(

√
n) query-time.

Here, Õ(·) hides polylogarithmic factors in n. In Section 12.3 we describe an
exact oracle for directed plane graphs with Õ(n4/3) space and O(log2 n) query
time.

We start with a planar embedded graph G with nonnegative edge-lengths.
Since we are dealing with distances, we can assume no self-loops and no parallel
edges. We can also assume that G is triangulated, by adding infinite-length
edges as needed to ensure that each face is a triangle.

All efficient distance oracles for planar graphs rely in some way or another
on a decomposition of the graph using separators. Recall the concept of a
decomposition tree of a plane graph G (Definition 5.9.5). We consider a specific
decomposition tree T of G which we will refer to as a recursive decomposition
of G. The root of T corresponds to G, and the two children x0, x1 of each
internal node x ∈ T are obtained by separating the region Rx using a simple
cycle separator Sx. (The precise choices of Sx will be specified later.) The region
Rx0 corresponding to x0 is the subgraph of Rx enclosed by Sx, and Rx1 is the
subgraph of Rx not strictly enclosed by Sx. Note that Sx is a face of both Rx0

and Rx1
. The decomposition is complete if the leaf subgraphs are small enough

according to some measure m(·) of graph size, i.e. for every leaf x, m(Rx) ≤ c

147

148 CHAPTER 12. DISTANCE ORACLES

for a constant c.
We say a path P crosses a simple cycle C if P contains both an edge strictly

enclosed by C and an edge not enclosed by C.

Lemma 12.0.1. Consider a recursive decomposition T of G using simple cycle
separators. Let P be a path in G. Let x, y be nodes of T . If P crosses Sx and
Sy then then P crosses Sw for some common ancestor w of x and y.

It follows that

Corollary 12.0.2. For any path P , there is a unique rootmost node z in T
such that P crosses S(z).

This property is crucial in some of the oracles we describe.

12.1 An approximate distance oracle for undi-
rected planar graphs

In this section we describe an approximate distance oracle for undirected planar
graphs. For approximate distances, we have another input, a parameter ε > 0.
A query Distance(u, v) will be answered with the length of a u-to-v path in G
such that the length is at most 1 + ε times the u-to-v distance.

12.1.1 Overall strategy

One key tool is the fundamental-cycle separator of edges (Lemma 5.3.3):

Lemma: There is a linear-time algorithm that, given a triangulated plane
graph G with a 1

3 -proper assignment of weights to edges, and a spanning tree T ,
returns a nontree edge ê such that the fundamental cycle of ê with respect to T
is a 2

3 -balanced cycle separator for G.
Let G be the input graph. The algorithm computes a shortest path tree T

rooted at an arbitrary vertex r of G. It then uses fundamental cycle separators
with respect to T to obtain a complete recursive decomposition T of the input
graph G. Each separator in the decomposition is a fundamental cycle C. Note
that C consists of (1) a nontree edge uv, together with (2) the lcaT (u, v)-to-u
path in T , and (3) the lcaT (u, v)-to-v path in T . This implies that there are
two leafward paths such that every vertex on the separator lies on at least one
of the paths (the least common ancestor lies on both). Note that since T is a
shortest path tree, both leafward paths are shortest paths in G.

The strategy for shortest-path approximation is as follows. Let u and v be
two given vertices. Assume u and v do not belong to the same leaf region of T
(distances between vertices in the same leaf region of T can be tabulated using
linear space). Let w be the leafmost node of T such that u, v ∈ Rw. Let P be a
shortest u-to-v path in G. Let z be the rootmost node of T such that P crosses
Sz. Note that z exists by Lemma 12.0.2, and that z is an ancestor of w. Also

12.1. AN APPROXIMATE DISTANCE ORACLE FOR UNDIRECTED PLANARGRAPHS149

note that the algorithm does not immediately know z, given u and v. For each
ancestor y of w, the algorithm will estimate the minimum length of a path that
(i) crosses Sy but (ii) does not cross Sy′ for any proper ancestor of y in T . The
estimate produced when y = z will satisfy the requirements.

12.1.2 Connections to a shortest path

Therefore we turn to the problem of estimating paths that cross a separator Sy.
We will use the fact that the vertices of Sy belong to two shortest paths.

Let H be a planar embedded graph, let S be a fundamental-cycle separator,
and let P be the set consisting of the two paths comprising S. For each path
P ∈ P, for each vertex v of H−S, we will select a set of vertices of V (P), which
we call the connectees of v (and P). For each connectee r of v we will record
the r-to-v distance in H. We will call the pair (r, v) a connection for v. Our
construction will have the following two properties.

1. For each vertex v, the number of connections for v is at most 8/(ε− ε2).

2. For any two vertices u, v, a shortest u-to-v path in H that crosses S is
ε-approximated by the shortest u-to-v path in H that goes from u to a
connectee ru for u, then along a path P ∈ P containing ru to a connectee
for v, then to v.

Now we give an algorithm that, for a given vertex v and a path P , selects
some vertices of P to be connectees of v. Let r0 be the vertex of P that is closest
to v among all vertices of P . For every node r of P , define h[r] = dist(r, r0).
The algorithm designates r0 as a connectee for v. It then uses two phases, a
forward phase and a backward phase, to select more connectees. The forward
phase selects connectees r1, r2, . . . and the backward phase selects connectees
r−1, r−2,

We describe the forward phase. The backward phase in analogous. The
forward phase considers vertices r of P one by one, in leafward order.

for i = 0, 1, 2, . . .
let r be the first vertex of P after ri such that

(1 + ε)dist(v, r) < dist(v, ri) + h[r]− h[ri]
P = dist(ri, r).

ri+1 := r
until there is no such vertex r

Since r appears after ri on P , h[r]−h[ri] = dist(ri, r). Hence, the expression
dist(v, ri)+h[r]−h[ri] is the length of an indirect path from v to r which goes via
a shortest path to ri, thence along P to r. Thus the condition in the procedure
holds if the direct shortest v-to-r path is much shorter than the indirect path.

Let r1, . . . , rk be the connectees chosen by the forward phase. We say that
a vertex v is covered by ri if dist(v, ri) + dist(ri, r) ≤ (1 + ε)dist(v, r).

150 CHAPTER 12. DISTANCE ORACLES

Lemma 12.1.1. For any vertex r of P that is leafward of r0, there is a connectee
ri that is rootward of r such that

dist(v, ri) + dist(ri, r) ≤ (1 + ε)dist(v, r) (12.1)

Proof. Let ri be the last vertex of P designated a connectee before a vertex after
r was considered. If ri = r then (12.1) holds trivially. If not, the inequality in
the procedure did not hold at the time r was considered, so we have

(1 + ε)dist(v, r) ≥ dist(v, ri) + h[r]− h[ri]

which is equivalent to (12.1).

Lemma 12.1.2. The number k of connectees chosen by the forward phase is
less than 2/(ε− ε2).

Proof. By Taylor series expansion, (1 + ε)−1 < 1− (ε− ε2). The choice of ri+1

guarantees

dist(v, ri+1) < (1 + ε)−1 (dist(v, ri) + h[ri+1]− h[ri])

≤ (1 + ε)−1dist(v, ri) + h[ri+1]− h[ri]

≤ dist(v, ri)− (ε− ε2)dist(v, ri) + h[ri+1]− h[ri]

≤ dist(v, ri)− (ε− ε2)dist(v, r0) + h[ri+1]− h[ri] (12.2)

Therefore we obtain the recurrence relation

dist(v, ri+1)− h[ri+1] < dist(v, ri)− h[ri]− (ε− ε2)dist(v, r0)

which yields

dist(v, ri)− h[ri] < dist(v, r0)− h[r0]− i(ε− ε2)dist(v, r0)

Recall that h[ri] = dist(r0, ri). Using the fact that h[ri] = 0, we have

dist(v, ri)− h[ri] < dist(v, r0)− i(ε− ε2)dist(v, r0) (12.3)

By the triangle inequality, the r0-to-ri distance is at most the r0-to-v distance
plus the v-to-ri distance, so

h[ri] ≤ dist(v, r0) + dist(v, ri)

which is equivalent to

dist(v, ri)− h[ri] ≥ −dist(v, r0)

which, combined with (12.3), yields

−dist(v, r0) < dist(v, r0)− k(ε− ε2)dist(v, r0)

where k is the number of connectees chosen by the forward phase. We therefore
obtain

k < 2/(ε− ε2)

12.1. AN APPROXIMATE DISTANCE ORACLE FOR UNDIRECTED PLANARGRAPHS151

Remark: In the proof of Lemma 12.1.2, we used (12.2), which is weaker than
the inequality actually used in the procedure. We could replace the inequal-
ity used in the procedure with (12.2), and Lemma 12.1.2 would still hold.
Lemma 12.1.1 would also still hold.

12.1.3 The oracle

Data structure. The data structure consists of the following:

1. A shortest path tree T of G, rooted arbitrarily, the distances h[·] from the
root, and a complete recursive decomposition T using fundamental cycle
separators with respect to T .

2. For each vertex v, a leaf of T containing v.

3. For every leaf node x ∈ T , the pairwise distances between all vertices of
Rx.

4. For every non-leaf node x ∈ T , for each of the two paths P comprising
Sx, for each internal vertex v ∈ Rx, a list of the connectees of v and
P in leafward order, as well as the distance distRx(v, r) betwwen each
connectee r and v. Here, a vertex v ∈ Rx is called internal to Rx if it does
not belong to Sx′ for any strict ancestor x′ of x in T .

Storing items 1-3 requires O(n) space. For every level ` of T , each vertex v
of G is internal to at most a single region Rx at level `. Hence, by Lemma 12.1.2
and since the depth of T is O(log n), storing item 4 requires O(ε−1n log n) space.

Query. Given u, v, the query algorithm retrieves nodes x, y ∈ T such that
u ∈ Rx and v ∈ Ry. If Rx = Ry, the algorithm returns dist(u, v), which is
stored explicitly in item 1. Otherwise, the algorithm finds w = lcaT (x, y). For
every ancestor y of w in T , for each of the two paths P comprising Sw, the
algorithm computes a distance estimate as follows. For each connectee r of u
on P , let t−(r) and t+(r) be the conectees of v that precede r and follow r in
the linear ordering of the conectees of u and of v on P along P , respectively.
Define for each conectee t of v on P , the connectees r−(t) and r+(t) analogously.
These conectees can be identified at query in O(ε−1) time by traversing the list
of connectees of u and v in an algorithm similar to that of merging two sorted
lists. The algorithm then computes

min
r

{
distRy (u, r) + dist(r, t

−(r)), distRy
(t−(r), v)

distRy
(u, r) + dist(r, t

+(r)), distRy
(t+(r), v)

,

and

min
t

{
distRy

(u, r−(t)) + dist(r
−(t), t), distRy

(t, v)
distRy

(u, r+(t)) + dist(r
+(t), t), distRy

(t, v)
,

where the minimization is over all connectees r of u and t of v on P , respectively.
The algorithm returns the minimum distance estimate found.

152 CHAPTER 12. DISTANCE ORACLES

Since each distance estimate corresponds to some path in G, the reported
distance is at least distG(u, v). Let Q be a shortest u-to-v path. Let z be the
rootmost node of T such that Q crosses Sz. Note that z exists by Lemma 12.0.2,
and that z is an ancestor of w. Let p be a vertex on Q ∩ P . By Lemma 12.0.2
and by Lemma 12.1.1, for y = z, for r a connectee of u that precedes or follows
p on P , and for t a connectee of u that precedes or follows p on P ,

distRz
(u, r) + dist(r, t) + distRz

(v, t) ≤
distRz

(u, r) + dist(r, p) + dist(t, p) + distRz
(v, t) ≤

(1 + ε)(distRz
(u, p) + distRz

(v, p)) = dist(u, v),

which proves the correctness of the query.
By Lemma 12.1.2, the time to compute the distance estimate for a particular

level ` is O(ε−1). Since the depth of T is O(log n), the total query time is
O(ε−1 log n).

12.1.4 Efficient construction

We now show how to construct the oracle in O(nε−1 log2 n) time. It is easy to
contsruct parts 1–3 of the data structure in O(n log n) time. The challenging
part is in computing the connections for part 4 of the data structure. We give an
algorithm that, for a subgraph H of G, and a shortest path P in H, finds a set
of connections satisfying the properties stated in Section 12.1.2 for all vertices
of H such that each vertex v has 4/(ε − ε2) connections. The running time of
this algorithm is O(nε−1 log n), so invoking it on each region in the complete
decomposition tree computes all the information required for part 4 of the data
structure in O(nε−1 log2 n) time.

The algorithm trims the graph along the path P (see Section 4.9). In the
resulting graph, which we also denote by H, the former darts of P form a new
face. Note that, because P is a shortest path, this transformation does not
change any the shortest paths and distances from any vertex v to any vertex of
P .

The algorithm applies the MSSP algorithm of Chapter 7 to (the modified)
H with the new face corresponding to P as the distinguished face, and finds, for
each 0 ≤ i < k, the sequence Ai of pivots that transform the ri-rooted shortest-
path tree into the ri+1-rooted shortest-path tree (ordered so that each inter-
mediate result is still a tree). Each pivot is represented by a triple (uw, α, vw)
where uw is the arc to be removed, vw is the arc to be inserted, and α is the
decrease in the distance to the w-rooted subtree.

The algorithm constructs an auxiliary graph from H by adding an artificial
root r̂ and zero-length arcs r̂ri to the vertices ri of P . Next, the algorithm finds
a shortest-path tree T̂ of the auxiliary graph rooted at r̂. For each i, let T̂i be
the subtree of T̂ rooted at ri. For each vertex v 6= r̂, let î(v) denote that integer
i such that v belongs to T̂i. That is, dist(rî(v), v) = mini dist(ri, v).

The algorithm next performs two phases, a forward phase and a backward
phase. In each phase, the algorithm designates pairs (r, v) ∈ V (P) × V (H) as

12.1. AN APPROXIMATE DISTANCE ORACLE FOR UNDIRECTED PLANARGRAPHS153

connections. The output of the algorithm is the set of all pairs designated as
connections. We describe the forward phase; the backward phase is similar.

At any point in the running of the phase, for a vertex v, let r(v) denote the
vertex r such that (r, v) was the last connection designated for v, or r(v) = ⊥
if no connection has yet been designated during the phase.

The algorithm maintains a link-cut tree representation of a tree T of H. The
link-cut tree supports costs assigned to vertices, with descendant bulk updates
and descendant searches. The cost of v is denoted σ(v).

The link-cut tree also maintains for each vertex v a label d[v] satisfying

d[v] = root-to-v distance in T (12.4)

The algorithm maintains the following invariant. Let r be the root of T . For
each vertex v, if r(v) 6= ⊥ then

σ(v) = (1 + ε)d[v]− (dist(r, r(v)) + dist(r(v), v)) (12.5)

Therefore, if σ(v) is nonpositive, the need to cover v suggests that (r, v) be
designated a connection.

initialize T to be the r0-rooted shortest-path tree
for each vertex v, initialize d[v] to be the length of the root-to-v path
initialize σ(v) :=∞ for every vertex v
for i := 0, 1, 2, . . . , k,

1 for each vertex v in T̂i,
2 designate (ri, v) a connection
3 assign σ(v) := εd[v]
4 while there exists a vertex v with σ(v) < 0,
5 designate (ri, v) a connection
6 assign σ(v) := εd[v]
7 if i < k,
8 comment: reroot the tree by ri+1

9 remove the arc of T entering ri+1 and add the arc ri+1ri
11 for every v, increase d[v] by `(ri+1ri)
12 set d[ri+1] := 0
13 for every v, increase σ(v) by ε`(ri+1ri)
14 comment: Carry out pivots.
15 for each (uw, α, vw) ∈ Ai,
16 remove uw from T and insert vw
17 subtract α from d[w′] for every vertex w′ in the w-rooted tree
18 subtract (1 + ε)α from σ(w′) for every vertex w′ in the w-rooted tree

Correctness

The algorithm ensures that, for every vertex v, equations (12.4) and (12.5)
hold. These hold immediately after the initializations. In Line 2 and in Line 5,
a new connection is designated for v. The assignment to σ(v) in Lines 3 and 6

154 CHAPTER 12. DISTANCE ORACLES

preserve the invariant (12.5). After the change of root in Line 9, Line 11 and 13
restore (12.4) and (12.5) for every vertex v except ri+1. Line 12 restores (12.4)
for v = ri+1. Since ri+1 belongs to T̂i+1, r(ri+1) = ⊥ so the invariant does not
require 12.5 to hold for v = ri+1.

The pivots in Lines 15-16 change the tree T , but the updates in Lines 17
and 18 restore (12.4) and (12.5).

Claim: The forward phase ensures that, after iteration i, for each vertex v,
if i ≥ î(v) then there is a connection (rj , v) such that (1 + ε)dist(ri, v) ≥
dist(ri, rj) + dist(rj , v).

Proof. If at the beginning of iteration i we have

(1 + ε)dist(ri, v) < dist(ri, r(v)) + dist(r(v), v)

then v is selected in some iteration of the while-loop of Line 4, and (ri, v) is
designated a connection.

Running time

Each iteration of the while-loop in Line 4 takes amortized O(log n) time. The
number of iterations is the total number of connections established, which is
O(nε−1). Lines 9-13 takes O(log n), and these are executed k ≤ n times, for
a total of O(n log n) time. Each execution of Lines 16-18 takes O(log n) time.
Over the course of the whole phase, the number of iterations of the loop in
Line 15 is O(m), which is O(n), so the total time for Lines 15-18 over the course
of the algorithm is O(n log n). Thus the total time is O(nε−1 log n).

12.2 An Exact distance oracles with Õ(n) space
and Õ(

√
n) query time

In this section we turn our attention to exact distance oracles. We start with
an oracle with nearly linear space that can answer distance queries exactly in
Õ(
√
n) time. Let G be a directed plane graph G with non-negative arc lengths.

The oracle consists of a complete recursive decomposition T of G using small
simple cycle separators (Theorem 5.8.1). Each vertex v ∈ G stores a pointer to
a leaf node x ∈ T such that Rx contains v. For each node x of T other than the
root r, let y denote the parent of x. Recall that the separator cycle Sy is a face
of the region Rx. The oracle stores the MSSP data structure (Section 7.9.3) for
the face Sy in the region Rx. In addition, it stores DDGx, the dense distance
graph of Sx in Rx, Recall from Chapter 8 that this is the compete graph on
the vertices of Sx, where the length of each arc ww′ is the w-to-w′ distance in
Rx. This complete graph is represented by a weighted adjacency matrix. The
MSSP data structure requires O(|Rx| log |Rx|) space and preprocessing time.
Since |Sx| = O(

√
|Rx|), storing DDGx requires O(|Rx|) space, and it can be

computed in O(|Rx| log |Rx|) time from the MSSP data structure. Since the

12.3. AN EXACTORACLEWITH Õ(N4/3) SPACE ANDO(LOG2N) QUERY TIME155

total size of all regions corresponding to nodes at the each level of T is O(n),
and since T has O(log n) levels, the total size and construction time of the data
structure are O(n log2 n).

We now describe how to answer a query for the distance from u to v. Let x
and y be leaf regions of T such that u ∈ Rx and v ∈ Ry, respectively. If x = y
the algorithm computes in constant time the distance distRx(u, v) within the
constant size region Rx. Let z′ be the lowest common ancestor of x and y in T .
For each ancestor z of z′ that is not a leaf of T (z′ is a leaf only when x = y),
the query algorithm computes distRz

(u, v) using the following lemma.

Lemma 12.2.1. distRz
(u, v) can be computed in O(|Sz| log2 |Sz|) time.

Proof. Let z0 and z1 be the children of z in T such that u ∈ Rz0 and v ∈ Rz1 .
Observe that any u-to-v path that is restricted to Rz intersects Sz. Such a path
can be decomposed into (i) a path in Rz0 from u to a vertex of Sz, (ii) zero
or more paths whose endpoints belong to Sz, each of which is either in Rz0 or
in Rz1 , and (iii) a path in Rz1 from a vertex of Sz to v. The algorithm runs
FR-Dijkstra (Chapter 9) on the dense distance graph of z with respect to Sz,
which consists of the two cliques DDGz0 and DDGz1 . It initializes the distance
labels for FR-Dijkstra with the distances in Rz0 from u to the vertices of Sz′
(which can be queried in O(log |Rz|) = O(log |Sz|) time per distance from the
MSSP data structure stored for z0). Since the number of vertices of each DDGzi
is |Sz|, the running time of FR-Dijkstra is O(|Sz| log2 |Sz|). Thus, FR-Dijkstra
outputs the distance in Rz from u to the vertices of Sz. The algorithm then
computes distRz

(u, v) as

min
w∈Sz

distRz
(u,w) + distRz1(w, v).

Note that the distance distRz1(w, v) for any w ∈ Sz can be queried inO(log |Rz|) =
O(log |Sz|) time from the MSSP data structure stored for z1.

The algorithm returns the minimum distRz (u, v) found among all ancestors
z of z′. The running time is dominated by the invocation of FR-Dijkstra at the
top level when z = r, which takes O(

√
n log2 n), because |Sr| = O(

√
n).

12.3 An exact oracle with Õ(n4/3) space and O(log2 n)
query time

In this section we describe an exact distance oracle with space Õ(n4/3), that
can answer distance queries in O(log2 n) time.

12.3.1 Additively weighted Voronoi diagrams.

Let H be a directed planar graph with real edge-lengths, and no negative-length
cycles. Assume that all faces of H are triangles except, perhaps, a single face
h, which we regard as the infinite face. Let S be the set of vertices that lie on

156 CHAPTER 12. DISTANCE ORACLES

h. The vertices of S are called sites. Each site s ∈ S has a weight ω(s) ≥ 0
associated with it. The additively weighted distance between a site s ∈ S and
a vertex v ∈ V , denoted by dω(s, v) is defined as ω(s) plus the length of the
s-to-v shortest path in H.

Definition 12.3.1. The additively weighted Voronoi diagram of (S, ω) (denoted
VD(S, ω,H)) is a partition of V (H) into pairwise disjoint sets, one set Vor(s)
for each site s ∈ S. The set Vor(s), which is called the Voronoi cell of s, contains
all vertices in V (H) that are closer (w.r.t. dω(.,.) in H) to s than to any other
site in S.

There is a dual representation VD∗(S, ω,H) (or simply VD∗) of a Voronoi
diagram VD(S, ω,H). Let H∗ be the dual of H. Let VD∗0 be the subgraph of
H∗ induced the edges whose endpoints in H are in different Voronoi cells. Let
VD∗1 be the graph obtained from VD∗0 by contracting edges incident to degree-2
vertices one after another until no degree-2 vertices remain. The vertices of
VD∗1 are called Voronoi vertices. A Voronoi vertex f∗ 6= h∗ is dual to a face
f such that the vertices of H incident to f belong to three different Voronoi
cells. We call such a face trichromatic. Each Voronoi vertex f∗ stores for each
vertex u incident to f the site s such that u ∈ Vor(s). Note that h∗ (i.e. the
dual vertex corresponding to the face h to which all the sites are incident) is
a Voronoi vertex. Each face of VD∗1 corresponds to a cell Vor(s). Hence there
are at most |S| faces in VD∗1. Since the minimum degree of a vertex in VD∗1 is 3
the sparsity lemma (Lemma 4.3.1) applies, so the complexity (i.e., the number
of vertices, edges and faces) of VD∗1 is O(|S|). Finally, we define VD∗ to be the
graph obtained from VD∗1 after replacing the node h∗ by multiple copies, one
for each occurrence of h as an endpoint of an edge in VD∗1. See Figure 12.1 for
an illustration.

Lemma 12.3.2. If ω is such that every vertex of S lies in its own Voronoi Cell
then VD∗(S, ω,H) is a tree.

Proof. Suppose that VD∗ contains a cycle C∗. Since the degree of each copy of
h∗ is one, the cycle does not contain h∗. Therefore, since all the sites are on the
boundary of the hole h, the vertices of H enclosed by C∗ are in a Voronoi cell
that contains no site, a contradiction.

To prove that VD∗ is connected, observe that in VD∗1, every Voronoi cell is
a face (cycle) going through h∗. Let C∗ denote this cycle. If C∗ is disconnected
in VD∗ then, in VD∗1, C∗ has more than 2 edges incident to h∗. But this
implies that the cell corresponding to C∗ contains more than a single site, a
contradiction. Thus, the boundary of every Voronoi cell is a connected subgraph
of VD∗. For any i, consider the edge ei = sisi+1. Since the endpoints of ei in
H are in distinct Voronoi cells, eiVD

∗
0. Therefore, the edge of VD∗1 into which

ei is contracted belongs to the two faces of VD∗1 that correspond to the Vor(si)
and to Vor(si+1). It follows that all the faces of VD∗1 are connected, and hence
VD∗ is connected.

12.3. AN EXACTORACLEWITH Õ(N4/3) SPACE ANDO(LOG2N) QUERY TIME157

Figure 12.1: A planar graph (black edges) with four sites on the infinite face
together with the dual Voronoi diagram VD∗ (in blue). The sites are shown
together with their corresponding shortest path trees (in turquoise, red, yellow,
and green).

Our representation of VD(S, ω,H) consists of the tree VD∗(S, ω,H). In
addition, each Voronoi vertex (i.e., each node of VD∗(S, ω,H)), corresponding
to a face f of H stores, for each vertex v of f , the site s ∈ S such that v ∈ Vor(s).

12.3.2 Point location in Voronoi diagrams

A point location query for a node v in a Voronoi diagram VD asks for the site
s of VD such that v ∈ Vor(s) and for the additive distance from s to v. We
describe a data structure supporting efficient point location, which is captured
by the following theorem, which is proved in the remainder of this section.

Theorem 12.3.3. Given an MSSP data structure for H with distinguished face
h (see Section 7.9.3), and given VD∗(S, ω,H), after O(|S|)-time preprocessing,
point location queries can be answered in time O(log2 |H|).

Recall that H is triangulated (except the face h). For technical reasons that
will be apparent later, we embed in every face f (other than h), with vertices

y1, y2, y3, three artificial auxiliary vertices yfj for j = 1, 2, 3, each with a single

zero-length incident edge (yj , y
f
j). The main idea is as follows. In order to

find the Voronoi cell Vor(s) to which a query vertex v belongs, it suffices to
identify an edge e∗ of VD∗ that is adjacent to Vor(s). Given e∗ we can simply
check which of its two adjacent cells contains v by comparing the distances
from the corresponding two sites to v (distances from sites are available from
the MSSP data structure). The point location structure is based on a centroid
decomposition of the tree VD∗ into connected subtrees, and on the ability to
determine which of the subtrees is the one that contains the desired edge e∗.

158 CHAPTER 12. DISTANCE ORACLES

The preprocessing consists of just computing a centroid decomposition of
VD∗. A centroid of an n-node tree T is a node u ∈ T such that removing u and
replacing it with copies, one for each edge incident to u, results in a set of trees,
each with at most n+1

2 edges. A centroid always exists in a tree with at least
one edge. The centroid decomposition of VD∗ is defined recursively. In every
step of the centroid decomposition we work with a connected subtree T ∗ of VD∗.
Initially, T ∗ is the entire tree VD∗. Recall that there are no nodes of degree 2
in VD∗. If there are no nodes of degree 3, then T ∗ consists of a single edge of
VD∗, and the decomposition terminates. Otherwise, we choose a centroid c∗,
and partition T ∗ into the three subtrees T ∗0 , T

∗
1 , T

∗
2 obtained by splitting c∗ into

three copies, one for each edge incident to c∗. Since the size of VD∗ is O(|S|),
the depth of this recursive decomposition is O(log |S|). Such a decomposition
can be computed easily computed in O(|S| log |S|) time, and in fact can be
computed in O(|S|) time. It can be represented as a ternary tree which we
call the centroid decomposition tree, in O(|S|) space. Each non-leaf node of the
centroid decomposition tree corresponds to a centroid vertex c∗, which is stored
explicitly. We will refer to nodes of the centroid decomposition tree by their
associated centroid. Each node also implicitly corresponds to the subtree of
VD∗ of which c∗ is the centroid. The leaves of the centroid decomposition tree
correspond to single edges of VD∗, which are stored explicitly.

Point location queries for a vertex v in the Voronoi diagram VD are answered
by invoking procedure HandleCentroid with input (T ∗, v), where T ∗ is the
centroid decomposition tree of VD∗.

The procedure HandleCentroid gets as input a centroid decomposition
tree T ∗ of a subtree of a Voronoi diagram VD∗, and the vertex v to be located.
It is required that some edge of the boundary of the Voronoi cell containing v in
VD∗ is a leaf in T ∗. HandleCentroid returns the site s such that v ∈ Vor(s),
and the additive distance to v. The algorithm is recursive, and bottoms out in
one of two base cases (Line 7 or Line 11). The first way the recursion can end
is if we reach the bottom of the centroid decomposition. If T ∗ is a singleton,
its single node f∗ corresponds to an edge in VD∗ separating the Voronoi cells
of two sites, say s1 and s2. At this point we know that either v ∈ Vor(s1)
or v ∈ Vor(s2), and determine which case is true by comparing the additive
distances from each of s1 and s2, which can be computed using the MSSP data
structure (Lines 2– 7).

We next explain how to treat the case that T ∗ is not a singleton. The root
f∗ of T ∗ is dual to a trichromatic face f composed of three vertices y0, y1, y2
in clockwise order, which are, respectively, in distinct Voronoi cells of sites
s0, s1, s2. Let e0, e1, e2 be the edges y2y0, y0y1, y1y2, respectively. For k ∈
{0, 1, 2}, let pk denote the sk-to-yk shortest path. Let Ck denote the path pk◦ek◦
rev(pk−1 (mod 3)). A vertex of H either lies on one of the pk’s, or strictly to the
right of exactly one of the Ck’s. (The second case can be equivalently restated
as follows: v is enclosed by the cycle comprised of Ck and the sk−1 (mod 3)-to-sk
subpath of the face h that does not contain sk+1 (mod 3)). See Figure ??.

For each k, we can check whether v lies on some pk using the MSSP data
structure. If this is the case, then v ∈ Vor(sk), and we are done (Lines 10– 11).

12.3. AN EXACTORACLEWITH Õ(N4/3) SPACE ANDO(LOG2N) QUERY TIME159

To support such queries with the MSSP data structure we need to augment
it with additional decorations. For a shortest path tree F , rooted at a vertex of
h, we define the preorder and postorder numbers of the the nodes of F by the
order in which nodes are visited by a depth-first-search traversal of F in which
darts incident to a node v are visited according to the permutation cycle in the
embedding of H that corresponds to v, starting from the dart d whose tail is
the parent of v in F (for the root of F , starting at an imaginary dart embedded
in the face h). For a node v, preorder(v) (postorder(v)) is the number of darts
of F traversed until the first (last) time v is visited by the traversal. Node x is
an ancestor of node y if and only if preorder(x) ≤ preorder(y) ≤ postorder(y) ≤
postorder(x). For two nodes x and y, such that none is an ancestor of the other
in F , we say that x is right of y in F if preorder(x) < preorder(y). Otherwise,
we say that x is left of y in F .

Lemma 12.3.4. The MSSP data structure for a graph H with distinguished
face h can be augmented to answer the following queries in O(log |H|) time per
query.

• Return the distance in H from a node s on h to any node v of H.

• Return whether x is an ancestor of y in the shortest path tree rooted at a
node s of h.

• Return whether x is right of y in the shortest path tree rooted at a node s
of h.

Problem 12.1. Prove Lemma 12.3.4 by showing how to maintain preorder and
postorder numbers as decorations of a link-cut tree representation of the primal
shortest path tree during the execution of the MSSP algorithm.

Lemma 12.3.5. We can check whether v lies strictly to the right of Ck with a
constant number of queries to an MSSP data structure for H with sources S.

Proof. By Lemma 12.3.4 we can check which of the sites sk and sk−1 (mod 3) is
closer to v with respect to the additive distances with two queries to the MSSP
data structure. Without loss of generality, suppose that sk is closer to v.

We claim that v lies strictly to the right of Ck if and only if v is right of yfk
in the shortest path tree rooted at sk. This is because a shortest sk-to-v path
that emanates left of of the shortest sk-to-yfk path must intersect pk−1 (mod 3).
This is a contradiction since all vertices on pk−1 (mod 3) are in Vor(sk−1 (mod 3)).

Checking whether v is right of yfk in the shortest path tree rooted at sk can
also be done with a single query to the MSSP data structure by Lemma 12.3.4.

When the algorithm finds that v is right of Ck, it recurses on T ∗k , the subtree
of T ∗ rooted at the child of f∗ that contains the leaf edge of VD∗ representing
e∗k (Line 14).

160 CHAPTER 12. DISTANCE ORACLES

Algorithm 12.1 HandleCentroid(T ∗, v)

Input: A centroid decomposition tree T ∗ of a subtree of a Voronoi diagram
VD∗, and the vertex v to be located.
Require: Some edge of the boundary of the Voronoi cell containing v in VD∗

is a leaf in T ∗.
Output: The site s such that v ∈ Vor(s), and the additive distance to v.

1: f∗ ← root of T ∗

2: if T ∗ is a singleton then
3: s1, s2 ← sites corresponding to f∗

4: for k = 1, 2 do
5: dk ← weight(sk) + dH(sk, v)

6: j ← argmink(dk)
7: return (sj , dj)

8: s0, s1, s2 ← sites corresponding to f∗

9: for k = 0, 1, 2 do
10: if v lies on pk then . pk is the sk-to-yk path in the shortest path tree

of H rooted at sk
11: return(sk,weight(sk) + dH(sk, v))
12: else if v is (strictly) right of Ck then . Ck is the concatenation of pk,

ek, and reversed pk−1 (mod 3)

13: T ∗k ← subtree of T ∗ rooted at the child of f∗ containing the leaf edge
of VD∗ representing e∗k

14: return HandleCentroid(T ∗k , v)

Lemma 12.3.6. HandleCentroid is correct.

Proof. Define f, yk, sk, e
∗
k, f
∗, pk, Ck as above, and let s̃ be such that v ∈ Vor(s̃).

If v is found to lie on pk in Line 10, then s̃ is sk, as returned in Line 11. The loop
invariant is that T ∗ contains some leaf edge that belongs to the boundary of the
cell Vor(s̃). This is clearly true in the initial call, when T ∗ is the entire centroid
decomposition of VD∗. Suppose that v is found to be strictly to the right of
Ck in Line 12. Observe that since pk and pk−1 are monochromatic, all edges
of VD∗ correspond to paths in H∗ that are disjoint from the set of dual edges
of Ck, with the exception of e∗k. We claim that T ∗k contains at least one edge
bounding Vor(s̃). This is clearly true if e∗k is such an edge, i.e. s̃ ∈ {sk−1, sk}.
In the complementary case, all vertices of Vor(s̃) are strictly to the right of Ck.
Hence, none of the edges bounding Vor(s̃) can be in T ∗k′ for k′ 6= k. Thus, the
maintained invariant implies that there is such an edge in T ∗k .

When f∗ is a single edge on the boundary of Vor(s1),Vor(s2) the loop invari-
ant guarantees that either s̃ = s1 or s̃ = s2. The additive distances d1 and d2
to s1 and s2 respectively are computed in Line 5, and s̃ is the site with smaller
additive distance among the two (Line 7). Hence, Line 6 returns the correct
answer.

The efficiency of procedure HandleCentroid depends on the time required

12.3. AN EXACTORACLEWITH Õ(N4/3) SPACE ANDO(LOG2N) QUERY TIME161

f ∗

si0

si1

si2

y0

y1

y2

f ∗

y0

y1

y2

s0

s1

s2

p0

p1

p2
e1

e2

e0

yf2
yf0

yf1

Figure 12.2: Illustration of the setting and proof of Lemma 12.3.6. Left: A
decomposition of VD∗ (shown in blue) by a centroid f∗ into three subtrees,
and a corresponding partition of P into three regions delimited by the paths
pi (shown in red, yellow, and turquoise). Right: a schematic illustration of the
same scenario.

to compute distances in H (Lines 5 and 11) and the left/right/on relationship
(Lines 10 and 12). By Lemma 12.3.5, given an MSSP data structure for H,
with sources S, each of these operations can be performed in time O(log |H|)
and hence Lemma 12.3.3 follows.

12.3.3 The oracle

For clarity of presentation, we first describe our oracle under the assumption
that the boundary vertices of each piece P in the r-division of the graph lie
on a single hole and that each such hole is a simple cycle. Multiple holes and
non-simple cycles do not pose any significant complications; we explain how to
treat pieces with multiple holes that are not necessarily simple cycles, separately.
For a piece P of an r–division of a graph G, we denote by P out the subgraph
G− (P − ∂P).

Data Structure. The data structure is recursive, with only 3 recursive levels.
We compute an r-division with r = n2/3

√
log n. The data structure consists of

the following for each piece P of the r-division:

1. If the recursive level is smaller than 3, the recursive data structure for P .
If the recursive level is 3, a table storing for each pair of vertices u, v in
P , the distance from u to v in P .

2. Two MSSP data structures, one for P and one for P out, both with sources
the nodes of ∂P . The MSSP data structure for P requires space O(r log r),
while the one for P out requires space O(n log n). The total space required

for the MSSP data structures is O(n
2

r log n), since there are O(nr) pieces.

162 CHAPTER 12. DISTANCE ORACLES

3. For each node u of P :

• VD∗in(u, P), the dual representation of the Voronoi diagram for P
with sites the nodes of ∂P , and additive weights the distances from
u to these nodes in G;

• VD∗out(u, P), the dual representation of the Voronoi diagram for P out

with sites the nodes of ∂P , and additive weights the distances from
u to these nodes in G.

The representation of each Voronoi diagram occupies O(
√
r) space and

hence, since each vertex belongs to a constant number of pieces, all Voronoi
diagrams require space O(n

√
r).

The total space used by items 2,3 at each recursive level is O(n4/3
√

log n).
In the third recursive level, since r3 = Õ(n8/27) = O(n1/3), the total size of all
tables in item 1 is O(nr3 (r3)2) = O(nr3) = O(n4/3). Thus, the total space is

O(n4/3
√

log n).

Query. We obtain a piece P of the r-division that contains u. Let us first
suppose that v ∈ P . We have to consider both the case that the shortest u-to-v
path crosses ∂P and the case that it does not. If it does cross, we retrieve
this distance by performing a point location query for v in the Voronoi diagram
VDin(u, P). If the shortest u-to-v path does not cross ∂P , the path lies entirely
within P . We thus retrieve the distance by querying the recursive distance
oracle for P . The answer is the minimum of the two returned distances. Else,
v 6∈ P and the shortest path from u to v must cross ∂P . The answer can be thus
obtained by a point location query for v in the Voronoi diagram VDout(u, P)
in time O(log2 n) by Lemma 12.3.3. The pseudocode of the query algorithm is
presented below as procedure SimpleDist(u, v) (Algorithm 12.2). Overall, we
make at most one point location query at each recursive level, plus at most one
table lookup in the third recursive level. Therefore the query time is O(log2 n).

Algorithm 12.2 SimpleDist(u, v)

Input: Two nodes u and v.
Output: dG(u, v).

1: P ← a piece of the r-division containing u
2: if v ∈ P then
3: d1 ← dP (u, v)
4: d2 ← PointLocate(VD∗in(u, P), v)
5: return min(d1, d2)
6: else
7: return PointLocate(VD∗out(u, P), v)

12.3. AN EXACTORACLEWITH Õ(N4/3) SPACE ANDO(LOG2N) QUERY TIME163

Dealing with holes. The data structure has to be modified as follows.

2. For each hole h of P , two MSSP data structures, one for P and one for
Ph,out, both with sources the nodes of ∂P that lie on h. Here, Ph,out is
the subgraph of P out bounded by the hole h.

3. For each node u of P , for each hole h of P :

• VD∗in(u, P, h), the dual representation of the Voronoi diagram for P
with sites the nodes of ∂P that lie on h, and additive weights the
distances from u to these nodes in G;

• VD∗out(u, P, h), the dual representation of the Voronoi diagram for
Ph,out with sites the nodes of ∂P that lie on h, and additive weights
the distances from u to these nodes in G.

As for the query, if v ∈ P we have to perform a point location query in
VDin(u, P, h) for each hole h of P . Else v 6∈ P and we have to perform a point
location query in VDout(u, P, h) for the hole h of P such that v ∈ Ph,out. We
can afford to store the required information to identify this hole explicitly in
balanced search trees.

We thus obtain the following result.

Theorem 12.3.7. For a planar graph G of size n, there is an O(n4/3
√

log n)-
sized data structure that answers distance queries in time O(log2 n).

164 CHAPTER 12. DISTANCE ORACLES

