Chapter 1

Rooted forests and trees

The notion of a rooted forest should be familiar to the reader. For completeness,
we will give formal definitions.

Let N be a finite set. A rooted tree on N is defined by the pair (N, p) where
p is a function p : N — N U { L} such that

e there is no positive integer k such that p¥(z) = z for some element 2 € N,
and

e there is exactly one element z € N such that p(z) = L.

This element is called the root. The elements of N are called the nodes of the
tree. They are also called the vertices of the tree.

For each nonroot node z, p(x) is called the parent of z in the tree, and the
ordered pair xp(z) is called the parent arc of x in the tree. An arc of the tree is
the parent arc of some nonroot node. If the parent of x is y then z is a child of
y and zy is the child arc of y.

A rooted tree has arity k if every node has at most k children. A binary tree
is a tree that has arity 2.

We say two nodes are adjacent if one is the parent of the other. We say the
arc xp(x) is incident to the nodes x and p(z).

The ancestors of x are defined inductively: z is its own ancestor, and (if =
is not the root) the ancestor’s of z’s parent are also ancestors of z. If z is the
ancestor of y then y is a descendant of . We say y is a proper ancestor of x
(and z is a proper descendant of y) if y is an ancestor of = and y # x. The depth
of a node is the number of proper ancestors it has.

We say an arc xp(z) is an ancestor arc of y if = is an ancestor of y. We say
ap(x) is a descendant arc of y if p(x) is a descendant of y.

A subtree of (N,p) is a tree (N',p’) such that N’ is a subset of N. A rooted
forest is a collection of disjoint rooted trees. That is, (N, p) is a forest if there
are trees (N1,p1), ..., (Ng,px) such that

N = N;UNoU- - UNg,

10 CHAPTER 1. ROOTED FORESTS AND TREES

and p; is the restriction of p to N;.
Deletion of an arc zp(x) from a rooted forest (IV,p) is an operation that
yields the forest (N, p’) where

(z) = 1 fe=2
PAT)= p(x) otherwise

If T is a rooted forest and e is an arc of T' then we use T' — {e} to denote the
result of deleting e.

Deletion of a node & from a rooted forest (IV,p) is an operation that yields
the forest (N — {2}, p’) where

p,(x):{ 1 if p(x) = &

p(z) otherwise

If T is a rooted forest and & is a node of T then we use T' — {2} to denote the
result of deleting x.

More generally, if S is a set of nodes or a set of arcs, T'— S denotes the forest
obtained by deleting every element of S.

For a tree T and a node z of T, the subtree rooted at x is the tree obtained
from T by deleting every node that is not a descendant of .

For a forest T and a node x of T, the root-to-x path is the sequence xgx1 ... Tk
where xg is the root of T, xy, is x, and x; is the parent of z;41 fori =0,...,k—1.
We denote this path by T'[z].

Ancestorhood defines a partial order among nodes of a forest. Given a set
S of nodes of a forest, a rootmost node of S in the forest is a node v such that
no proper ancestor of v is in S. A leafmost node of S is a node v such that no
proper descendant of v is in S.

Given two nodes u and v of a forest, we say w is leafward of v and v is
rootward of u if u is a descendant of v. A sequence vy, ..., v, of nodes of the
forest is a leafward path if v;’s parent is v; 41 for i =1,..., k — 1.

1.1 Rootward computations
Suppose T is a rooted tree and w(-) is an assignment of weights to the nodes.

There is a simple, linear-time algorithm to compute, for each node u, the total
weight of all descendants of u:

def TOTALWEIGHT (u):
return w(u) + > {TOTALWEIGHT(v) : v a child of u}

This algorithmic schema, though simple, comes up again and again: in finding
separators for trees (in the next section), in algorithms that exploit interdigitat-
ing trees in planar graphs (Section 4.5, in processing a breadth-first-search tree
(Section 5.4), in dynamic-programming algorithms on trees (Section 14.1) and
on graphs of bounded carvingwidth (Section 14.3.1) and bounded branchwidth
(Section 14.5.1).

1.2. SEPARATORS FOR ROOTED TREES 11

1.2 Separators for rooted trees

A separator for a tree is a vertex or edge whose deletion results in trees that are
“small” in comparison to the original graph.

Lemma 1.2.1 (Leafmost Heavy Vertex). Let T be a rooted tree. Let w(-) be an
assignment of weights to vertices such that the weight of each vertex is at least
the sum of the weights of its children. Let W be the weight of the root, and let «
be a positive number less than 1. Then there is a linear-time algorithm to find
a vertex vy such that w(vg) > oW and every child v of vy satisfies w(v) < aW.

Proof. Call the procedure below on the root of 7'

define f(v):

1 if some child u of v has w(u) > aW,
2 return f(u)

3 else return v

By induction on the number of invocations, for every call f(v), we have w(v) >
aW. If v is a leaf then the condition in Line 1 is not satisfied, so the procedure
terminates. Let vy be the vertex returned by the procedure. Since the condition
in Line 1 did not hold for vg, every child v of vy satisfies w(v) < aW. O

1.2.1 Vertex separator

Lemma 1.2.2 (Tree Vertex Separator). Let T' be a rooted tree, and let w(-) be
an assignment of weights to vertices. Let W be the sum of weights. There is a
linear-time algorithm to find a vertez vy such that every component in T — {vg}
has total weight at most W/2.

Proof. For each vertex u, define w(u) = > {w(v) : v a descendant of u}. Then
w(root) = W. The values w(-) can be computed using a rootward computation
as in Section 1.1. Let vy be the vertex of the Leafmost-Heavy-Vertex Lemma
with @ = 1/2. Let v1,...,v, be the children of vg. For each child v;, the
subtree rooted at v; has weight at most W/2. Each such subtree is a tree of

T — {vo}. The remaining tree is T — {v : v is a descendant of vo}. Since
the sum >° i 5 descendant of v, W(v) = W(vo) exceeds W/2, the weight of the
remaining tree is less than /2. O

1.3 Edge separators

For some separators, we need to impose a condition on the weight assignment.
We say a weight assignment is a-proper if no element is assigned more than an
a fraction of the total weight.

12 CHAPTER 1. ROOTED FORESTS AND TREES

Lemma 1.3.1 (Tree Edge Separator of Edge-Weight). Let T be a tree of degree
at most three, and let w(-) be a %—pmper assignment of weights to edges. There
is a linear-time algorithm to find an edge é such that every component in T —{é}
has at most two-thirds of the weight.

Proof. Assume for notational simplicity that the total weight is 1. Choose a
vertex of degree one as root. For each nonroot vertex v, define

w(v) = Z{w(e) : e a descendant edge of v} U {parent edge of v}

Define w(root) = 1. Let vy be the vertex of the Leafmost-Heavy-Vertex Lemma
with a = 1/3. Let eg be the parent edge of v. Then T — {eg} consists of two
trees. Onme tree consists of all descendants of vy, and the other consists of all
nondescendants.

The weight of all edges among the nondescendants is 1 — w(vg), which is
less than 1 —1/3 since w(vg) > 1/3. Let vy, ..., v, be the children of vg. (Note
that 1 < p < 2.) The weight of all edges among the descendants is > ©_, w(v;).
Since w(v;) < 1/3 fori=1,...,p and p < 2, we infer) w(v;) < 2/3. O

The following example shows that the restriction on the arity of the trees in
Lemma 1.3.1 cannot be discarded:

1/k Jk

If the number of children is &k then removal of any edge leaves weight (k —1)/k.
The following example shows that, for trees of degree at most three, the
factor two-thirds in Lemma 1.3.1 cannot be improved upon.

1/3

173 1/3

Lemma 1.3.2 (Tree Edge Separator of Vertex Weight). Let T be a tree of degree
at most three, and let w(-) be a %—pmper assignment of weights to vertices such
that each nonleaf vertex is assigned at most one-fourth of the weight. There is a
linear-time algorithm to find an edge é such that every component T — {é} has
at most three-fourths of the weight.

Proof. Assume the total weight is 1. Root T" at a leaf. For each vertex v, define
w(v) = Z{w(v’) : v" a descendant of v}

Let v be the vertex of the Leafmost-Heavy-Vertex Lemma with o = 3/4. Let
v1,...,Up be the children of v. Note that 0 < p < 2. Since w(v) < % but
w(v) > 3, we must have p > 0, so w(v) < 1.

1.4. RECURSIVE TREE DECOMPOSITION 13

For 1 < i < p, let W; be the weight of descendants of v;. Let i =
maxarg; <;<,Wi. By choice of v, W; < %. By choice of ¢,
1

1 <& 3 13 1
Wiz g 2 Wi 5 —wl) 2 55— P =W/4

This shows that choosing € to be the edge v;v satisfies the balance condition. [J

The following example shows that the factor three-fourths in Lemma 1.3.2

cannot be improved upon.
1/4

1/4

1/4 1/4

By changing our goal slightly, we can get a better-balanced separator.

Lemma 1.3.3 (Tree edge separator of Vertex/Edge Weight). Let T be a binary
tree, and let w(-) be a é—pmper assignment of weight to the vertices and edges
such that degree-three vertices are assigned zero weight. There is a linear-time
algorithm to find an edge e such that every component of T — e has at most
two-thirds of the weight.

Problem 1.3.4. Prove Lemma 1.3.5.

1.4 Recursive tree decomposition

Problem 1.4.1. A recursive edge-separator decomposition for an unrooted tree
T is a rooted tree D such that

e the root r of D is labeled with an edge e of T';

e for each connected component K of T — e (there are at most two), r has a
child in D that is the root of a recursive edge-separator decomposition of

K.

Show that there is an O(nlogn) algorithm that, given a tree T' of mazimum
degree three and n nodes, returns a recursive edge-separator decomposition of
depth O(logn)

1.5 Data structure for sequences and rooted trees

In the Appendix, we describe data structures for representing sequences and
rooted trees.

Problem 1.5.1. Show that the data structure for representing trees can be
used to quickly find edge-separators in binary trees. Use this idea to give a fast
algorithm that, given a tree of mazimum degree three, returns a recursive edge-
separator decomposition of depth O(logn). Note: A running time of O(n) can
be achieved.

14

CHAPTER 1.

ROOTED FORESTS AND TREES

