
Flatworlds: Optimization Algorithms for Planar

Graphs

Philip N. Klein

copyright

October 21, 2011

2

Contents

1 Rooted forests and trees 12

1.1 Rootward computations . 13
1.2 Separators for rooted trees . 14

1.2.1 Vertex separator . 14
1.3 Edge separators . 14
1.4 Recursive tree decomposition . 16
1.5 Data structure for sequences and rooted trees 16

2 Basic graph definitions 17

2.1 Edge-centric definition of graphs 18
2.2 Walks, paths, and cycles . 19

2.2.1 Connectedness . 20
2.2.2 Subgraphs and edge subgraphs 21
2.2.3 Deletion of edges and vertices 21
2.2.4 Contraction of edges . 22
2.2.5 Minors . 22

3 Elementary graph theory 23

3.1 Beginning of Graph Theory: Euler Tours 23
3.2 Spanning forests and trees . 24

3.2.1 Nontree edges and fundamental cycles 25
3.3 Cuts . 25

3.3.1 (Undirected) cuts . 25
3.3.2 (Directed) dicuts . 26
3.3.3 Dart cuts . 26
3.3.4 Bonds/simple cuts . 26
3.3.5 Tree edges and fundamental cuts 26
3.3.6 Paths and Cuts . 27
3.3.7 Two-edge-connectivity and cut-edges 27

3.4 Vector Spaces . 28
3.4.1 The cut space . 28
3.4.2 The cycle space . 29
3.4.3 Bases for the cut space and the cycle space 30
3.4.4 Another basis for the cut space 31

3

4 CONTENTS

3.4.5 Conservation and circulations 31
3.5 Embedded graphs . 32

3.5.1 Embeddings . 33
3.5.2 Euler characteristic and genus 35
3.5.3 Remark on the connection to geometric embeddings . . . 35
3.5.4 The dual graph . 35
3.5.5 Connectedness properties of embedded graphs 36
3.5.6 Cut-edges and self-loops 37
3.5.7 Deletion . 37
3.5.8 Compression (deletion in the dual) and contraction 37

4 Planar embedded graphs 41

4.1 Planar embeddings . 41
4.2 Contraction preserves planarity 41
4.3 Sparsity of planar embedded graphs 42

4.3.1 Strict graphs and strict problems 42
4.3.2 Semi-strictness . 43
4.3.3 Orientations with bounded outdegree 43
4.3.4 Maintaining a bounded-outdegree orientation for a dy-

namically changing graph 44
4.3.5 Analysis of the algorithm for maintaining a bounded-outdegree

orientation . 44
4.4 Cycle-space basis for planar graphs 46

4.4.1 Representing a circulation in terms of face potentials . . . 47
4.5 Interdigitating trees . 48
4.6 Simple-cut/simple-cycle duality 49

4.6.1 Compressing self-loops . 50
4.6.2 Compression and deletion preserve planarity 51

4.7 Faces, edges, and vertices enclosed by a simple cycle 51
4.8 Crossing . 52

4.8.1 Crossing paths . 52
4.8.2 Non-self-crossing paths and cycles 52

4.9 Representing embedded graphs in implementations 52

5 Separators in planar graphs 53

5.1 Triangulation . 53
5.2 Weights and balance . 53
5.3 Fundamental-cycle separators . 53
5.4 Breadth-first search . 54
5.5 O(

√
n)-vertex separator . 55

5.5.1 Finding the middle level 56
5.5.2 Finding small levels . 56
5.5.3 Extracting a middle graph and low-depth spanning tree . 56
5.5.4 Separating the middle graph 57
5.5.5 Analysis . 57

5.6 Biconnectivity . 58

CONTENTS 5

5.7 Noncrossing families of subsets 58
5.8 The connected-components tree with respect to breadth-first search 58
5.9 Cycle separators . 60

5.9.1 Finding the middle node 60
5.9.2 Finding small levels . 60
5.9.3 Extracting a middle graph and a low-depth spanning tree 60
5.9.4 The cycle separator . 62

5.10 Division into regions . 62
5.10.1 Concave function . 62
5.10.2 Phase One: Finding regions with on-average small bound-

aries . 63
5.10.3 Phase Two: Splitting small regions into small regions with

small boundaries . 64
5.11 Recursive divisions . 66
5.12 History . 66

6 Shortest paths with nonnegative lengths 67

6.1 Shortest-path basics: path-length property and relaxed and tense
darts . 67

6.2 Using a division in computing shortest-path distances 68
6.2.1 The algorithm . 69

6.3 Correctness . 71
6.4 The Dijkstra-like property of the algorithm 72
6.5 Accounting for costs . 73
6.6 The Payoff Theorem . 77
6.7 Analysis . 78
6.8 Parameters . 79
6.9 History . 81

7 Multiple-source shortest paths 83

7.1 Slack costs, relaxed and tense darts, and consistent price vectors 83
7.1.1 Slack costs . 83
7.1.2 Relaxed and tense darts 84
7.1.3 Consistent price vectors 84

7.2 Specification of multiple-source shortest paths 86
7.2.1 Pivots . 86

7.3 Contiguity property of shortest-path trees in planar graphs . . . 87
7.4 Using the output of the MSSP algorithm 87

7.4.1 Paths . 89
7.4.2 Distances . 89

7.5 The abstract MSSP algorithm . 90
7.5.1 Analysis of the abstract algorithm 91

7.6 ChangeRoot: the inner loop of the MSSP algorithm 91
7.7 Which darts are candidates for pivoting in 93
7.8 Efficient implementation . 94

7.8.1 ChangeRoot . 95

6 CONTENTS

7.8.2 Data structure . 95

8 Shortest paths with negative lengths 99

9 Single-source, single-sink max flow 101

9.1 Flow assignments, capacity assignments, and feasibility 101
9.1.1 Negative capacities . 101

9.2 Circulations . 101
9.2.1 Capacity-respecting circulations in planar graphs 102

9.3 st-flows . 102
9.4 Max limited flow in st-planar graphs 103

9.4.1 st-planar embedded graphs and augmented st-planar em-
bedded graphs . 103

9.4.2 The set-up . 104
9.4.3 The algorithm . 105

9.5 Max flow in general planar graphs 105
9.6 The algorithm . 105
9.7 Erickson’s analysis . 107

9.7.1 Dual tree is shortest-path tree 107
9.7.2 Crossing numbers . 107

9.8 Covering space . 108
9.9 Finishing the proof . 108

10 Multiple-source, multiple-sink max flow 109

11 Primal-dual method for approximation algorithms applied to

planar graphs 111

11.1 Goemans and Williamson’s analysis of the primal-dual approxi-
mation algorithm . 111

11.2 Proving the bound for vertex-weighted Steiner tree 112
11.3 Covering all directed cycles . 115

12 Approximate distance queries 119

12.1 Preprocessing a planar graph to support arbitrary vertex-to-vertex
approximate-distance queries . 119

12.2 Efficient construction . 122
12.2.1 Correctness . 124
12.2.2 Running time . 124

13 Carvingwidth, branchwidth, and an approximation scheme for

vertex cover in planar graphs 125

13.1 Dynamic programming on a rooted tree 125
13.2 Carvings . 126
13.3 Carving of a vertex set . 127

13.3.1 Solving edge-cover on a bounded-carvingwidth graph . . . 127
13.4 Carvingwidth of a planar graph 128

CONTENTS 7

13.5 Carving of an edge-set . 129
13.5.1 Solving vertex cover on a graph of bounded branchwidth . 130

13.6 A branchwidth bound for planar graphs 130
13.7 The face-vertex incidence graph 130
13.8 The embedded face-vertex incidence graph 132
13.9 The dual of the face-incidence graph 135
13.10From a carving-decomposition ofM(G) to a branch-decomposition

of G . 135
13.11Proof of the Radius-Branchwidth Theorem 136
13.12An approximation scheme for minimum-weight vertex cover . . . 137

13.12.1Performance analysis . 138
13.12.2Run-time analysis . 139
13.12.3Other problems . 139

14 Approximation scheme for the traveling salesman problem 141

14.0.4 The framework . 141
14.0.5 Preliminaries related to TSP 143

14.1 Approximation scheme . 145
14.1.1 Spanner step . 146

14.2 Slices . 147
14.3 TSP algorithm . 152

14.3.1 Running time . 152
14.3.2 Correctness . 152

14.4 Solving TSP in a planar embedded graph with bounded dual radius153
14.4.1 Reduction to degree three 153
14.4.2 Overview of dynamic program 155
14.4.3 Terminology . 155
14.4.4 Definition of the tables . 156
14.4.5 The recurrence relation 157
14.4.6 The dynamic program . 158
14.4.7 Analysis of the dynamic program 159

14.5 Spanner . 159

15 Approximation scheme for subset TSP 165

16 Brick decomposition 167

16.1 Definition of brick decomposition 167
16.2 Using the brick decomposition in a PTAS for Steiner tree 168

17 Appendix: Binary search trees and link-cut trees 169

17.1 Binary Search Trees . 169
17.1.1 Delta Representation of weights 169
17.1.2 Supporting searches for small weight 170
17.1.3 Delta Representation of min-weights 171
17.1.4 Delta representation of left-right 171

8 CONTENTS

17.1.5 Rotation: An order-preserving structural change to a bi-
nary search tree . 172

17.1.6 Updating Delta representations in a rotation 172
17.1.7 Updating ∆min representations in a rotation 174

17.2 Splay trees . 174
17.2.1 Potential Functions for Amortized Analysis 175
17.2.2 Analysis of splay trees . 176
17.2.3 Using splay trees to represent sequences and trees 178

17.3 Representation of link-cut trees 179
17.3.1 High-level analysis of the expose operation 180
17.3.2 Representation of trees . 182
17.3.3 Link-cut trees that do not support descendant search . . . 182
17.3.4 Implementing the expose operation for trees not support-

ing descendant search . 183
17.3.5 Analysis of Expose(u) for trees not supporting descen-

dant search . 184
17.4 Link-cut trees that support descendant search 185
17.5 Topological updates in link-cut trees 186

17.5.1 Analysis of link and cut operations 187
17.6 Weight updates for link-cut trees 187

17.6.1 Supporting AddToDescendants 188
17.6.2 Supporting AddToAncestors 189
17.6.3 Getting the weight of a node 190

17.7 Weight searches in link-cut trees 190
17.8 Supporting ancestor searches . 191

17.8.1 FindSolid . 191
17.8.2 AncestorFindWeight and AncestorFindMin 192
17.8.3 Supporting descendant searches 193

Chapter 1

Rooted forests and trees

The notion of a rooted forest should be familiar to the reader. For completeness,
we will give formal definitions.

Let N be a finite set. A rooted tree on N is defined by the pair (N, p) where
p is a function p : N −→ N ∪ {⊥} such that

• there is no positive integer k such that pk(x) = x for some element x ∈ N ,
and

• there is exactly one element x ∈ N such that p(x) = ⊥.

This element is called the root. The elements of N are called the nodes of the
tree. They are also called the vertices of the tree.

For each nonroot node x, p(x) is called the parent of x in the tree, and the
ordered pair xp(x) is called the parent arc of x in the tree. An arc of the tree is
the parent arc of some nonroot node. If the parent of x is y then x is a child of
y and xy is the child arc of y.

A rooted tree has arity k if every node has at most k children. A binary tree
is a tree that has arity 2.

We say two nodes are adjacent if one is the parent of the other. We say the
arc xp(x) is incident to the nodes x and p(x).

The ancestors of x are defined inductively: x is its own ancestor, and (if x
is not the root) the ancestor’s of x’s parent are also ancestors of x. If x is the
ancestor of y then y is a descendant of x. We say y is a proper ancestor of x
(and x is a proper descendant of y) if y is an ancestor of x and y �= x. The depth
of a node is the number of proper ancestors it has.

We say an arc xp(x) is an ancestor arc of y if x is an ancestor of y. We say
xp(x) is a descendant arc of y if p(x) is a descendant of y.

A subtree of (N, p) is a tree (N �, p�) such that N � is a subset of N . A rooted
forest is a collection of disjoint rooted trees. That is, (N, p) is a forest if there
are trees (N1, p1), . . . , (Nk, pk) such that

N = N1∪̇N2∪̇ · · · ∪̇Nk

12

1.1. ROOTWARD COMPUTATIONS 13

and pi is the restriction of p to Ni.
Deletion of an arc xp(x) from a rooted forest (N, p) is an operation that

yields the forest (N, p�) where

p�(x) =

�
⊥ if x = x̂
p(x) otherwise

If T is a rooted forest and e is an arc of T then we use T − {e} to denote the
result of deleting e.

Deletion of a node x̂ from a rooted forest (N, p) is an operation that yields
the forest (N − {x̂}, p�) where

p�(x) =

�
⊥ if p(x) = x̂
p(x) otherwise

If T is a rooted forest and x̂ is a node of T then we use T − {x} to denote the
result of deleting x.

More generally, if S is a set of nodes or a set of arcs, T −S denotes the forest
obtained by deleting every element of S.

For a tree T and a node x of T , the subtree rooted at x is the tree obtained
from T by deleting every node that is not a descendant of x.

For a forest T and a node x of T , the root-to-x path is the sequence x0x1 . . . xk

where x0 is the root of T , xk is x, and xi is the parent of xi+1 for i = 0, . . . , k−1.
We denote this path by T [x].

Ancestorhood defines a partial order among nodes of a forest. Given a set
S of nodes of a forest, a rootmost node of S in the forest is a node v such that
no proper ancestor of v is in S. A leafmost node of S is a node v such that no
proper descendant of v is in S.

Given two nodes u and v of a forest, we say u is leafward of v and v is
rootward of u if u is a descendant of v. A sequence v1, . . . , vk of nodes of the
forest is a leafward path if vi’s parent is vi+1 for i = 1, . . . , k − 1.

1.1 Rootward computations

Suppose T is a rooted tree and w(·) is an assignment of weights to the nodes.
There is a simple, linear-time algorithm to compute, for each node u, the total
weight of all descendants of u:

def totalWeight(u):
return w(u) +

�
{totalWeight(v) : v a child of u}

This algorithmic schema, though simple, comes up again and again: in finding
separators for trees (in the next section), in algorithms that exploit interdigitat-
ing trees in planar graphs (Section 4.5, in processing a breadth-first-search tree
(Section 5.4), in dynamic-programming algorithms on trees (Section 13.1) and
on graphs of bounded carvingwidth (Section 13.3.1) and bounded branchwidth
(Section 13.5.1).

14 CHAPTER 1. ROOTED FORESTS AND TREES

1.2 Separators for rooted trees
Should have pictures of sep-
arators. A separator for a tree is a vertex or edge whose deletion results in trees that are

“small” in comparison to the original graph.

Lemma 1.2.1 (Leafmost Heavy Vertex). Let T be a rooted tree. Let ŵ(·) be an
assignment of weights to vertices such that the weight of each vertex is at least
the sum of the weights of its children. Let W be the weight of the root, and let α
be a positive number less than 1. Then there is a linear-time algorithm to find
a vertex v0 such that ŵ(v0) > αW and every child v of v0 satisfies ŵ(v) ≤ αW .

Proof. Call the procedure below on the root of T .

define f(v):
1 if some child u of v has ŵ(u) > αW ,
2 return f(u)
3 else return v

By induction on the number of invocations, for every call f(v), we have ŵ(v) >
αW . If v is a leaf then the condition in Line 1 is not satisfied, so the procedure
terminates. Let v0 be the vertex returned by the procedure. Since the condition
in Line 1 did not hold for v0, every child v of v0 satisfies ŵ(v) ≤ αW .

1.2.1 Vertex separator

Lemma 1.2.2 (Tree Vertex Separator). Let T be a rooted tree, and let w(·) be
an assignment of weights to vertices. Let W be the sum of weights. There is a
linear-time algorithm to find a vertex v0 such that every component in T −{v0}
has total weight at most W/2.

Proof. For each vertex u, define ŵ(u) =
�

{w(v) : v a descendant of u}. Then
ŵ(root) = W . The values ŵ(·) can be computed using a rootward computation
as in Section 1.1. Let v0 be the vertex of the Leafmost-Heavy-Vertex Lemma
with α = 1/2. Let v1, . . . , vp be the children of v0. For each child vi, the
subtree rooted at vi has weight at most W/2. Each such subtree is a tree of
T − {v0}. The remaining tree is T − {v : v is a descendant of v0}. Since
the sum

�
v is a descendant of v0

w(v) = ŵ(v0) exceeds W/2, the weight of the
remaining tree is less than W/2.

1.3 Edge separators

For some separators, we need to impose a condition on the weight assignment.
We say a weight assignment is α-proper if no element is assigned more than an
α fraction of the total weight.

1.3. EDGE SEPARATORS 15

Lemma 1.3.1 (Tree Edge Separator of Edge-Weight). Let T be a tree of degree
at most three, and let w(·) be a 1

3 -proper assignment of weights to edges. There
is a linear-time algorithm to find an edge ê such that every component in T−{ê}
has at most two-thirds of the weight.

Proof. Assume for notational simplicity that the total weight is 1. Choose a
vertex of degree one as root. For each nonroot vertex v, define

ŵ(v) =
�

{w(e) : e a descendant edge of v} ∪ {parent edge of v}

Define ŵ(root) = 1. Let v0 be the vertex of the Leafmost-Heavy-Vertex Lemma
with α = 1/3. Let e0 be the parent edge of v. Then T − {e0} consists of two
trees. One tree consists of all descendants of v0, and the other consists of all
nondescendants.

The weight of all edges among the nondescendants is 1 − ŵ(v0), which is
less than 1− 1/3 since ŵ(v0) > 1/3. Let v1, . . . , vp be the children of v0. (Note
that 1 ≤ p ≤ 2.) The weight of all edges among the descendants is

�p
i=1 ŵ(vi).

Since w(vi) ≤ 1/3 for i = 1, . . . , p and p ≤ 2, we infer
�

i ŵ(vi) ≤ 2/3.

The following example shows that the restriction on the arity of the trees in
Lemma 1.3.1 cannot be discarded:

...1/k 1/k

If the number of children is k then removal of any edge leaves weight (k− 1)/k.
The following example shows that, for trees of degree at most three, the

factor two-thirds in Lemma 1.3.1 cannot be improved upon.

1/3

1/3

1/3

Lemma 1.3.2 (Tree Edge Separator of Vertex Weight). Let T be a tree of degree
at most three, and let w(·) be a 3

4 -proper assignment of weights to vertices such
that each nonleaf vertex is assigned at most one-fourth of the weight. There is a
linear-time algorithm to find an edge ê such that every component T − {ê} has
at most three-fourths of the weight.

Proof. Assume the total weight is 1. Root T at a leaf. For each vertex v, define

ŵ(v) =
�

{w(v�) : v� a descendant of v}

Let v be the vertex of the Leafmost-Heavy-Vertex Lemma with α = 3/4. Let
v1, . . . , vp be the children of v. Note that 0 ≤ p ≤ 2. Since w(v) ≤

3
4 but

ŵ(v) > 3
4 , we must have p > 0, so w(v) ≤ 1

4 .

16 CHAPTER 1. ROOTED FORESTS AND TREES

For 1 ≤ i ≤ p, let Wi be the weight of descendants of vi. Let î =
maxarg1≤i≤pWi. By choice of v, Wî ≤

3
4 . By choice of î,

Wî ≥
1

2

p�

i=1

Wi >
1

2
(
3

4
− w(v0)) ≥

1

2
(
3

4
−

1

4
) = W/4

This shows that choosing ê to be the edge vîv satisfies the balance condition.

The following example shows that the factor three-fourths in Lemma 1.3.2
cannot be improved upon.

1/4

1/4

1/4

1/4

By changing our goal slightly, we can get a better-balanced separator.

Lemma 1.3.3 (Tree edge separator of Vertex/Edge Weight). Let T be a binary
tree, and let w(·) be a 1

3 -proper assignment of weight to the vertices and edges
such that degree-three vertices are assigned zero weight. There is a linear-time
algorithm to find an edge e such that every component of T − e has at most
two-thirds of the weight.

Problem 1.3.4. Prove Lemma 1.3.3.

1.4 Recursive tree decomposition

Problem 1.4.1. A recursive edge-separator decomposition for an unrooted tree
T is a rooted tree D such that

• the root r of D is labeled with an edge e of T ;

• for each connected component K of T − e (there are at most two), r has a
child in D that is the root of a recursive edge-separator decomposition of
K.

Show that there is an O(n log n) algorithm that, given a tree T of maximum
degree three and n nodes, returns a recursive edge-separator decomposition of
depth O(log n)

1.5 Data structure for sequences and rooted trees

In the Appendix, we describe data structures for representing sequences and
rooted trees.

Problem 1.5.1. Show that the data structure for representing trees can be
used to quickly find edge-separators in binary trees. Use this idea to give a fast
algorithm that, given a tree of maximum degree three, returns a recursive edge-
separator decomposition of depth O(log n). Note: A running time of O(n) can
be achieved.

Chapter 2

Basic graph definitions

To quote Berge,

It would be convenient to say that there are two theories and two
kinds of graphs: directed and undirected. This is not true. All graphs
are directed, but sometimes the direction need not be specified.

That is, for specific graph problems it is convenient to ignore the distinction
between endpoints.

We define one combinatorial structure, a graph.1 There are three ways to in-
terpret this combinatorial structure, as an undirected graph, as a directed graph,
and as a bidirected graph. Each kind of graph has its uses, and it is convenient
to be able to view the underlying graph from these different perspectives.

In the traditional definition of graphs, vertices are in a sense primary, and
edges are defined in terms of the vertices. We used this approach in defining
rooted trees in Chapter 1. In defined graphs, we choose to make edges primary,
and we will define vertices in terms of edges.

There are three reasons for choosing the edge-centric view:

• Self-loops and multiple edges, which occur often, are more simply handled
by an edge-centric view.

• Contraction, a graph operation we discuss later, transforms a graph in
a way that changes the identity of vertices but not of edges. The edge-
centric view is more natural in this context, and simplifies the tracking of
an edge as the graph undergoes contractions.

• The dual of an embedded graph is usefully viewed as a graph with the
same edges, but where those edges form a different topology.

There is one seeming disadvantage: our definition of graphs does not permit the
existence of isolated vertices, vertices with no incident edges. This disadvantage

1Our definition allows for self-loops and multiple edges, a structure traditionally called a

multigraph.

17

18 CHAPTER 2. BASIC GRAPH DEFINITIONS

is mitigated by another odd aspect of our approach: a subgraph of a graph is not
in itself an independent graph but depends parasitically on the original graph.

2.1 Edge-centric definition of graphs

For any finite set E, a graph on E is a pair G = (V, E) where V is a partition
of the set E × {1,−1}, called the dart set of G. That is, V is a collection of
disjoint, nonempty, mutually exhaustive subsets of E × {1,−1}. Each subset is
a vertex of G. (The word node is synonymous with vertex). For any e ∈ E, the
darts of e are the pairs (e,+1) and (e,−1), of which the primary dart of e is
(e,+1). For brevity, we can write (e,+1) as e+ and (e,−1) as e−

a

b

c

d
e

f

gh

i

j

Figure 2.1: The vertex v is the subset of darts {(e, 1), (f,−1), (g, 1), (h,−1)}.
An example of a walk is (j, 1) (a,−1) (i, 1) (i,−1) (d,−1) (d, 1).

rev Define the bijection rev on darts by rev((e, σ)) = (e,−σ). For a dart d,
rev(d) is called the reverse of d, and is sometimes written as dR.

endpoints, head and tail, self-loops, parallel edges The tail of a dart
(e, σ) is the block v ∈ V such that v contains (e, σ). The head of (e, σ) is the
tail of rev((e,−σ)).

Each element e ∈ E has two endpoints, namely the head and tail of (e, 1).
If the endpoints are the same vertex, we call e a self-loop. In Figure 2.1, i is a
self-loop. If two elements have the same endpoints, we say they are parallel, for
example, b and j are parallel in Figure 2.1.

Edges and arcs We can interpret an element e ∈ E as a directed arc, in
which case we distinguish between its head and tail, which are, respectively, the
head and tail of the primary dart (e,+1). If we interpret e as an undirected
edge, we do not distinguish between its endpoints. Thus use of the word edge
or arc indicates whether we intend to interpret the element as undirected or
directed. The edge or arc of a dart (e, σ) is defined to be e.

2.2. WALKS, PATHS, AND CYCLES 19

Parallel arcs/edges and self-loops If two arcs have the same tail and the
same head, we say they are parallel arcs. If two edges have the same pair of
endpoints, we say they are parallel edges. If the endpoints of an edge/arc are
the same, we say it is a self-loop. Our definition of graph permits parallel edges
and self-loops.

Incidence, degree We say an edge/arc/dart is incident to a vertex v if v is
one of the endpoints. The degree of a vertex v (written degree(v)) is the number
of occurences of v as an endpoint of elements of E (counting multiplicity2). The
outdegree of v (written outdegree(v)) is the number of arcs having v as a tail,
and the indegree (written indegree(v)) is the number of arcs having v as a head.

Endpoint notation We sometimes write an arc as uv to indicate that its tail
is u and its head is v, and we sometimes write an edge the same way to indicate
that its endpoints are u and v. This notation has the potential to be ambiguous
because of the possibility of parallel edges.

V (G) and E(G) For a graph G = (V, E), we use V (G) and E(G) to denote V
and E, respectively, and we use n(G) and m(G) to denote |V (G)| and |E(G)|.
We use D(G) to denote the set of darts of G. We may leave the graph G
unspecified if doing so introduces no ambiguity. Is n(G) or m(G) ever used?

b

a e c

d

a
b c

e

d

Figure 2.2: Two graphs corresponding to the edges a, . . . , e.

2.2 Walks, paths, and cycles

Walks As illustrated in Figure 2.1, a non-empty sequence

d1 . . . dk

of darts is a walk if the head of di is the tail of di+1 for every 1 ≤ i ≤ k. To be
more specific, it is a x-to-y walk if x is d1 or the tail of d1 and y is dk or the
head of dk. We define di to be the successor in W of di to be di+1 and we define
predecessor of di+1 to be di. We may designate a walk to be a closed walk if the
tail of d1 is the head of dk, in which case we define the successor of dk to be d1
and the predecesor of d1 to be dk.

2That is, a self-loop contributes two to the degree of a vertex.

20 CHAPTER 2. BASIC GRAPH DEFINITIONS

Paths and cycles A walk is called a path of darts if the darts are distinct, a
cycle of darts if in addition it is a closed walk. A path/cycle of darts is called a
path/cycle of arcs if each dart is of the form (e,+1). It is called a path/cycle of
edges if no edge is represented twice.

Simple paths and cycles, internal vertices A cycle is simple if every
vertex occurs at most once as the head of some di. A path is simple if it is
not a cycle and every vertex occurs at most once as the head of some di. A
vertex is said to belong to the path or cycle if the vertex is an endpoint of some
di. The internal vertices of a path d1 . . . dk are the heads of d1, . . . , dk−1. Two
paths/cycles are dart-disjoint if they share no darts, and are vertex-disjoint if
they share no vertices. Two paths are internally vertex-disjoint if they share no
internal vertices.

Walks, paths, and cycles of arcs/edges A sequence e1, . . . , ek of ele-
ments of E is a directed walk (or diwalk) if the sequence of corresponding darts
(e1, 1), . . . , (ek, 1) is a walk. It is a directed path (or dipath) if, in addition,
e1, . . . , ek are distinct. It is an undirected walk if there exist i1, . . . , ik ∈ {1,−1}
such that the sequence of darts (e1, i1), . . . , (ek, ik) is a walk. It is an undi-
rected path if in addition e1, . . . , ek are distinct. The other definitions given for
sequences of darts apply straightforwardly to paths consisting of elements of E.

Empty walks and paths In the above, we neglected to account for the
possibility of an empty walk or path. Empty walks and paths are defined by a
vertex in the graph; they contain no darts. We do not allow for the existence of
empty cycles.

Lemma 2.2.1. A u-to-v walk of darts contains a u-to-v path of darts as a
subsequence.

2.2.1 Connectedness

Given a graph G = (V,E), for a vertex or dart x and a vertex or dart y, we say
x and y are connected in G if there is a v1-to-v2 path of darts in G. Similarly,
edges e1 and e2 are connected in G if there is a path of darts that starts with a
dart of e1 and ends with a dart of e2.

More generally, given a subset E� of E, we say that v1, v2 are connected via
E� in G if there is a v1-to-v2 path using only darts corresponding to edges of
E�.

A subset of V is connected in a graph if every two vertices in the subset
are connected. Connectedness is an equivalence relation on the vertex set. A
connected component is an equivalence class of this equivalence relation. Equiv-
alently, a connected component is a maximal connected vertex subset. Let κ(G)
denote the number of connected components of G.

2.2. WALKS, PATHS, AND CYCLES 21

graph G

graph obtained by deletionsedge subgraph

Figure 2.3: This figure illustrates the difference between an edge subgraph
(shown on the bottom-left) and a traditional subgraph, a graph obtained by
edge deletions (shown on the bottom-right). In the graph obtained by dele-
tions, the center vertex does not exist since all its incident edges have been
deleted. The edge subgraph does not formally include the grayed-out edges but
still contains the center vertex. There are other advantages to the edge subgraph
that we will discuss in the context of graph embeddings.

2.2.2 Subgraphs and edge subgraphs

We will use the term subgraph in two ways. According to the traditional defini-
tion, a subgraph of a graph G = (V,E) is simply a graph H = (V �, E�) such that
V � ⊆ V and E� ⊆ E. Because we often want to relate features of a subgraph
to the graph from which it came, we will define an edge subgraph of G as a pair
(G,E�) where E� ⊆ E(G).

If it is clear which graph G is intended, we will sometimes use an edge-set
E� to refer to the corresponding edge subgraph (G,E�).

One significant distinction between a graph and an edge subgraph is this:
according to our definition, a graph G cannot contain a vertex with no incident
edges, whereas an edge subgraph (G,E�) can contain a vertex v (a vertex of G)
none of whose incident edges belong to E�.

The usual definitions (walk, path, cycle, connectedness) extend to an edge
subgraph by restricting the darts comprising these structures to those darts
corresponding to edges in E�. For example, two vertices x and y of G are
connected in (G,E�) if there is an x-to-y path of darts belonging to E�. As in
graphs, a connected component of an edge subgraph ofG is a maximal connected
subset of V (G). We define κ((G,E�)) to be the number of connected components
in this sense. For example, the edge subgraph on the bottom-left in Figure 2.3
has two connected components. (The graph on the bottom-right has only one.)

2.2.3 Deletion of edges and vertices

Deleting a set S of edges from G is the operation on a graph that results in
the subgraph or edge subgraph of G consisting of the edges of G not in S. We
denote this subgraph or edge subgraph by G− S.

The result of deleting a set V � of vertices from G is the graph (not the edge
subgraph) obtained by deleting all the edges incident to the vertices in V �. This

22 CHAPTER 2. BASIC GRAPH DEFINITIONS

subgraph is denoted G − V �. Since isolated vertices (vertices with no incident
edges) cannot exist according to our definition of graphs, deleted vertices cease
to exist when deleted.

Deletion of multiple edges and/or vertices results in a graph or edge-subgraph
that is independent of the order in which the deletions occured.

2.2.4 Contraction of edges

For a graph G = (V,E) and an edge uv ∈ E, the contraction of e in G is an
operation that produces the graph G� = (V �, E�), where

• E� = E − {uv}, and

• the part of V containing u and the part of V containing v are merged (and
uv is removed) to form a part V �.

b a

c d

e e

c d

b

Figure 2.4: (a) A graph with an edges a, . . . , e. (b) The graph after the con-
traction of edge a.

Like deletions, the order of contractions of edges does not affect the result.
For a set S of edges, the graph obtained by contracting the edges of S is denoted
G/S.

2.2.5 Minors

A graph H is said to be a minor of a graph G if H can be obtained from G
by edge contractions and edge deletions. The relation “is a minor of” is clearly
reflexive, transitive, and antisymmetric.

Note that each vertex v of H corresponds to a set of vertices in G (the set
merged to form v).

Chapter 3

Elementary graph theory

3.1 Beginning of Graph Theory: Euler Tours

The story of graphs began with Leonhard Euler (1707-1783). Euler was a re-
markable mathematician (both pure and applied) and managed to contribute
to the foundation for so many subfields of mathematics (number theory and
algebra, complex analysis, calculus, differential geometry, fluid mechanics, and
even music theory and cartography).

One field that began with Euler was topology. He learned of the bridges-of-
Königsberg problem and published his solution in an article called “The solution
of a problem relating to the geometry of position.”. The phrase “geometry
of position” reflected his realization that the geometry of the problem, in the
traditional sense of geometry, was irrelevant. According to Euler’s geometry of
position, structure and adjacency were important but geometric distance was
not. Euler abstracted what we now call a graph from the map of Königsberg.
He then gave necessary and sufficient conditions for a graph to admit a tour
that visits every edge exactly once.

Lemma 3.1.1 (Euler’s Lemma). Any nonempty graph with no vertices of degree
one has a simple cycle.

Proof. Let G = (V, E) be a nonempty graph with all degrees ≥ 2, and let d be
a dart of one of the edges. Execute the following algorithm, where select is a
function that returns one element of its (set-valued) argument.

1 Let v be the tail of d
2 While the head of d has not been previously assigned to v,
3 Let v be the head of d.
4 Let d := select(v − {rev(d)})

Let vi and di be the values, respectively, of the variables v and d after i iterations.
The condition in step 1 guarantees that the vertices v0, v1, . . . are distinct, which

23

24 CHAPTER 3. ELEMENTARY GRAPH THEORY

implies that the darts d0, d1, . . . are distinct. In step 4, therefore, since v has
at least one dart (namely rev(d)) and does not have degree one, it has at least
one dart in addition to rev(d). Thus step 4 cannot fail. Since there are a
finite number of vertices, the algorithm must terminate after some number k of
iterations, when the vertex containing rev(d) is vi for some i ≤ k. At this point,
the sequence di, di+1, . . . , dk of darts corresponds to a simple cycle.

Corollary 3.1.2 (Euler’s Corollary). The edges of a graph can be written as a
disjoint union of simple cycles iff all degrees are even.

Proof. (only if) Suppose the edges of G can be written as a disjoint union
C1∪· · ·∪Ck of simple cycles. For each vertex v and for i = 1, . . . , k, the number
of edges of Ci incident to v is two if v is a vertex of Ci and zero otherwise. The
degree of v is 2|{i : v ∈ Ci}|, which is even.
(if) The proof is by induction on the number of edges. The corollary holds
trivially for an empty graph. Suppose G is a nonempty graph with all degrees
even. By Euler’s Lemma, G contains a simple cycle C. For each vertex v, the
number of edges of C incident to v is zero or two, and therefore even. Deleting
the edges of C from G therefore yields a graph G� that still has all degrees even.
By the inductive hypothesis, the edges of G� can be decomposed into simple
cycles. Adding C to this decomposition yields a decomposition for G.

Theorem 3.1.3 (Euler’s Theorem). An undirected graph has a path of edges
containing every edge iff the graph is connected and every node has even degree.

The directed version of Euler’s Corollary states that if every vertex of a
directed graph has outdegree equal to indegree, then its arcs can be decomposed
into a disjoint union of simple directed cycles.

3.2 Spanning forests and trees

An edge subgraph of G that has no undirected cycles is called a forest of G, and
is called a tree of G if it is connected. A forest is a disjoint union of trees.

A forest F of G is a spanning forest if every pair of vertices that are connected
in G are also connected in F . A spanning forest that is a tree is called a spanning
tree.

Let F be a spanning forest of G. An edge of G is a tree edge (or tree arc)
with respect to F if e belongs to F , and otherwise is a nontree edge (or arc).

Lemma 3.2.1. If F is a spanning forest, |E(F)| = |V (F)| − κ(F).

Lemma 3.2.2. Suppose F is a forest of G, and uv is an edge in E(G)−E(F)
such that u and v are not connected in F . Then F ∪ {uv} is a forest.

Proof. Let F � = F ∪ {uv}, and suppose F � has a simple cycle C. Then C must
include the edge uv, for otherwise C is a cycle in F . But C − {uv} is a path in
F connecting u and v, a contradiction.

3.3. CUTS 25

Figure 3.1: A graph is shown; the dashed edges form a cut.

We say an edge-subgraph F of G is a spanning forest if every pair u, v of
vertices that are connected in G are also connected in F . Note that in this case
κ(F) = κ(G). If G is connected then a spanning forest is a tree, so we call it a
spanning tree of G.

Corollary 3.2.3 (Matroid property of forests). For any forest F of G, there
exists a set M of edges in E(G)−F such that F ∪M is a spanning forest of G.

Corollary 3.2.4. If F is a forest of G and |E(F)| = |V (G)| − 1 then F is a
spanning tree of G.

Proof. By Corollary 3.2.3, there exists a set M of edges in E(G) − E(F) such
that F ∪M is a spanning forest of G. By Corollary 3.2.1,

|V (G)| − κ(G) = |F |+ |M |

= |V (G)| − 1 + |M |

so 1−|M | = κ(G). Since κ(G) ≥ 1, we can infer that |M | = 0 and κ(G) = 1.

3.2.1 Nontree edges and fundamental cycles

Let G be a graph, and let F be a spanning forest of G. For a dart d of an
nontree edge, there is a simple head(d)-to-tail(d) path d1 · · · dk of darts in G
whose edges belong to F . Write d0 = d so d0 · · · dk is a simple cycle Ce of darts,
called the fundamental cycle of d with respect to F . For an arc e of E(G)− F ,
we define the fundamental cycle of e to be the fundamental cycle of the primary
dart (e,+1).

3.3 Cuts

3.3.1 (Undirected) cuts

For a graph G and a set S of vertices of G, we define δG(S) to be the set of
edges having one endpoint in S and one endpoint not in S. We say a set of
edges of G is a cut of G if it has the form δG(S).

26 CHAPTER 3. ELEMENTARY GRAPH THEORY

3.3.2 (Directed) dicuts

We define δ+G(S) to be the set of arcs whose tails are in S and whose heads are
not in S. Note that δ+G(S) is a subset of δG(S). A set of arcs of G is a directed
cut (a.k.a. dicut) if it has the form δ+G(S).

3.3.3 Dart cuts

For a set S of vertices of G, we define �δG(S) to be the set of darts whose tails
are in S and whose heads are not in S. Note that �δG(S) has one dart for each
edge in δG(S). We refer to �δG(S) as the dart boundary of S in G.

3.3.4 Bonds/simple cuts

Let G be a graph, let K be a connected component of G, and let S be a subset
of the vertices of K. We say a cut δG(S) or a dart cut �δG(S) is a bond or a
simple cut if S is connected in G and V (K)− S is connected in G.

Note that a cut in G is minimal among nonempty cuts iff it is a simple cut.
Any cut can be written as a disjoint union of simple cuts.

Vertex cuts Now let S be a set of edges. We define ∂G(S) to be the set of
vertices v such that at least one edge incident to v is in S and at least one edge
incident to v is not in S. We refer to ∂G(S) as the vertex boundary of S in G.
A vertex of ∂G(S) is a boundary vertex of S in G.

Notational conventions We may omit the subscript and write δ(S) or δ+(S)
when doing so introduces no ambiguity.

For a vertex v, we may write δ(v) or �δ(v) to mean δ({v}) or �δ({v}).

Question 3.3.1. Give a graph G and a vertex v for which �δG(v) is not identical
to the set v of darts.

3.3.5 Tree edges and fundamental cuts

Let G be a graph, and let F be a spanning forest of G.
For a tree edge e = u1u2 (where u1 = tail(e) and u2 = head(e)), let K be

the connected component of F that contains e. For i = 1, 2, let

Si = {vertices reachable from ui via edges of F − e}

Claim: S1 and S2 form a partition of the vertices of K.

Proof. Let T be the tree connecting the vertices of F . For any vertex v of K,
for i = 1, 2, let Pi be the simple v-to-ui path in T . If e were in neither P1 nor
P2 then P1 ◦ rev(P2) ◦ e would be a simple cycle in T , so e is in one of them,
say P1. Then the prefix of P1 ending just before e is a simple v-to-u2 path not
using e, so v is in S2.

3.3. CUTS 27

We call �δG(S1) the fundamental cut of e in G with respect to F . Since S1

and S2 are connected in K, the claim implies the following.

Lemma 3.3.2 (Fundamental-Cut Lemma). For any tree edge e, the fundamen-
tal cut of e is a simple cut.

Lemma 3.3.3. For distinct tree edges e, e�, e� is not in the fundamental cut of
e.

Problem 3.3.4. Prove Lemma 3.3.3.

3.3.6 Paths and Cuts

Lemma 3.3.5 (Path/Cut Lemma). Let G be a graph, and let u and v be vertices
of G.

• Dipath/Dicut For a set A of arcs, every u-to-v dipath contains an arc of
A iff there is a dicut δ+(S) ⊆ A such that u ∈ S, v �∈ S.

• Path/Cut For a set E of edges, every u-to-v path contains an edge of A
iff there is a cut δ(S) ⊆ A such that u ∈ S, v �∈ S.

• Dart Path/Dart Cut For a set D of darts, every u-to-v path of darts
contains a dart of D iff there is a dart cut �δ(S) ⊆ D such that u ∈ S, v �∈ S.

Proof. We give the proof for the first statement; the proofs for the others are
similar.

Let S be the set of vertices reachable from x via paths that avoid arcs in A.
(only if) Suppose every x-to-y dipath contains an arc of A. Then x ∈ S, y �∈

S. Let uv be an arc in δ+(S). then u ∈ S, so there is an x-to-u path P that
avoids arcs in A. On the other hand, v �∈ S, so every x-to-v path contains an
arc in A. Consider the path P uv. It is an x-to-v path, so contains some arc in
A, but P has no arcs of A, so uv ∈ A.

(if) Suppose there is a dicut δ+(S) ⊆ A such that x ∈ S, y �∈ S. Let P be
any x-to-y path, and let v be the first vertex in P that does not belong to S
(there is at least one such vertex, since y �∈ S). Let u be the predecessor of v in
P . By choice of v, we know u ∈ S. Hence uv ∈ δ+(S), so uv ∈ A.

3.3.7 Two-edge-connectivity and cut-edges

We define an equivalence relation, two-edge-connectivity, on edges. Edges e1 and
e2 are two-edge-connected in G if G contains a cycle of edges containing both
of them. The equivalence classes of this relation are called two-edge-connected
components. Check definition.

An edge e of G is a cut-edge if the two-edge-connected component containing
e contains no other edges.

Lemma 3.3.6 (Cut-Edge Lemma). An edge e of G is a cut-edge iff every path
between its endpoints uses e.

PICTURE

28 CHAPTER 3. ELEMENTARY GRAPH THEORY

3.4 Vector Spaces

Dart space Let G = (V,E) be a graph. The dart space of G is RE×{±1}, the
set of vectors α that assign a real number α[d] to each dart d. For a vector c
in dart space and given a set S of darts, c(S) denotes

�
d∈S c[d].

Vertex space The vertex space of G is RV . A vector of vertex space is called
a vertex vector.

Arc space and arc vectors The arc space of G is a vector subspace of the
dart space, namely the set of vectors α in the dart space that satisfy antisym-
metry:

for every dart d,α[d] = −α[rev(d)] (3.1)

A vector in arc space is called an arc vector. We will mostly be working with
arc vectors.

η(d) For a dart d, define η(d) to be the arc vector such that η(d)[d] = 1 and
η(d)[d�] = 0 for all darts d� such that d� �= d and d� �= rev(d).

Fact 3.4.1. The vectors {η((a,+1)) : a ∈ E} form a basis for the arc space.

We extend this notation to sets of darts: η(S) =
�

d∈S η(d). Formally, a
vertex v is the set of darts having v as tail, so η(v) =

�
d η(d) where the sum

is over those darts whose tails are v.

For a dart d,

η(v)[d] =






1 if only a’s tail is v
−1 if only a’s head is v
0 otherwise

A self-loop cancels itself out.

The dart-vertex incidence matrix AG For a graph G, we denote by AG

the dart-vertex incidence matrix, the matrix whose columns are the vectors
{η(v) : v ∈ V (G)}. That is, AG has a row for each dart d and a column for
each vertex v, and the dv entry is 1 if v is the tail of d, -1 if v is the head of d,
and zero otherwise.

3.4.1 The cut space
Maybe call it the vertex ba-
sis. Let G be a graph. The vector space spanned by the set {η(�δG(S)) : S ⊂

V} is called the cut space of G. To define a basis for this vector space, let
K1, . . . ,Kκ(G) be the connected components of G, and let v1, . . . , vκ(G) be repre-
sentative vertices chosen arbitrarily from the vertex sets of the components. Let
CUTG = {η(�δG(v)) : v ∈ V−{v̂1, . . . , v̂κ(G)}}. Note that |CUTG| = |V|−κ(G).
Clearly each vector in CUTG belongs to the cut space. We will eventually prove

3.4. VECTOR SPACES 29

that CUTG is a basis for the cut space. (For brevity, we may omit the subscript
when the choice of graph G is clear.)

Lemma 3.4.2. The vectors in CUT are linearly independent (so span(CUT)
has dimension |CUT|).

Proof. Suppose ψ =
�

v ψvη(v) is a nonzero linear combination of vectors in
CUT. We show that the sum is not the all-zeroes vector. Let H be the subgraph
induced by the set of vertices v such that ψv �= 0. Let K be a connected
component of H. Since K is a proper subgraph of some connected component
K � of G itself (K includes no representative vertex v̂i), there is some arc uv
having exactly one endpoint in K. Assume without loss of generality that u
belongs to K. Its other endpoint v cannot lie in another component of H, else
u and v would be in the same component. Hence ψv = 0. This implies that the
component of ψ corresponding to uv is nonzero.

3.4.2 The cycle space

We turn to another vector space. We define the cycle space of G to be the
orthogonal complement of the cut space in the arc space. That is, the cycle
space is

{θ ∈ cut space : θ · η(v) = 0 for all v ∈ V } (3.2)

It follows via elementary linear algebra that the dimension of the cycle space
plus the dimension of the cut space is |E|.

To define a basis for the cycle space, consider G as an undirected graph, and
let F be a spanning forest. For each arc e in E(G)− F (i.e., each nontree arc),
we use Ce to denote the fundamental cycle of e with respect to F (defined in
Section 3.2.1). We define βF (e) to be η(Ce) . We may omit the subscript F
when it is clear which forest is intended.

We will show that the vectors in the set CycF = {βF (e) : e ∈ E − F} are
independent and belong to the cycle space. Note that |CycF | = |E| − |F |.

Lemma 3.4.3. The vectors in CycF are independent, (so span(CycF) has
dimension |CycF |).

Proof. For any e ∈ E − F , the only vector in CycF with a nonzero entry in
the position corresponding to e is βF (e), so this vector cannot be written as a
linear combination of other vectors in CycF .

The following lemma partially explains the name of the cycle space.

Lemma 3.4.4. If W is a closed walk then η(W) is in the cycle space.

The proof is illustrated in Figure 3.2.

30 CHAPTER 3. ELEMENTARY GRAPH THEORY

v

Figure 3.2: Consider a walk W and a vertex v. The darts of W that enter
v are matched up with darts of W that leave v. In the vector η(v), darts
leaving v are represented by!+1, and darts entering v are represented by -1, so
η(v) · η(W) = 0.

Proof. Let v be a vertex. For each dart d in W whose tail is v, v is the head of
the predecessor of d in W , and for each dart d in W whose head is v, v is the
tail of the successor of d. This shows that the number of darts of W whose tail
is v equals the number of darts of W whose head is v, proving η(v) · η(W) = 0.
This shows that η(W) lies in the cycle space as defined in 3.2.

Corollary 3.4.5. The vectors in CycF belong to the cycle space (so span(CycF)
has dimension at most that of the cycle space).

Proof. Every vector βF (e) in CycF is equal to η(Ce) where Ce is a cycle, so by
Lemma 3.4.4 belongs to the cycle space.

3.4.3 Bases for the cut space and the cycle space

Now we put the pieces together.

Corollary 3.4.6. CUT is a basis for the cut space, and CycF is a basis for
the cycle space.

Proof. By Lemma 3.4.2, for some nonnegative integer j1,

dim(cut space) = j1 + |CUT| (3.3)

= j1 + |V| − κ(G) (3.4)

By Corollary 3.4.5 and Lemma 3.4.3, for some nonnegative integer j2,

dim(cycle space) = j2 + |CycF | (3.5)

= j2 + |E| − |F | (3.6)

Since the cut space and the cut space are orthogonal,

|E| = dim(arc space) (3.7)

= dim(cut space) + dim(cycle space) (3.8)

= j1 + |V| − κ(G) + j2 + |E| − |F | (3.9)

= j1 + |V| − κ(G) + j2 + |E| − (|V | − κ(G)) (3.10)

= j1 + j2 + |E| (3.11)

3.4. VECTOR SPACES 31

-2

3

-3

1

2
-4
4

-3

-1
3v

Figure 3.3: The two darts that enter v from its left carry positive amounts (3
and 2) of the commodity. The three darts that leave v to its right carry positive
amounts (3, 1, and 4). The net outflow is 3 + 1 + 4 − (3 + 2) = 3.Because of
antisymmetry, a simpler way to calculate net outflow at v is to sum the values
assigned to all darts leaving v: (−3) + (−2) + 3 + 1 + 4 = 3.

so j1 = 0 and j2 = 0, proving that CUT is a basis for the cut space and CycF

is a basis for the cycle space.

We call CycF the fundamental-cycle basis with respect to F .

3.4.4 Another basis for the cut space

Let F be a spanning forest of G. Consider the set of vectors

{η(fundamental cut of e with respect to F) : e ∈ F}

Clearly each vector is in the cut space. Since distinct tree edges are not in each
other’s fundamental cuts (Lemma 3.3.3), these vectors are linearly independent.
The set consists of |F | vectors. Since F is a spanning forest of G, |F | = |V (G)|−
κ(G). The set of vectors therefore has the same cardinality as |CUT|. It follows
that this set of vectors is another basis for the cut space, and we call it the
fundamental-cut basis with respect to F .

3.4.5 Conservation and circulations

Let γ be an arc vector. We can interpret γ as a plan for transporting amounts
of some commodity (e.g. oil) along darts of the graph. If f [d] > 0 for some
dart d then we think of γ[d] units of the commodity being routed along dart d.
Because γ satisfies antisymmetry (3.1), γ[rev(d)] < 0 in this case.

The (net) outflow of γ at a vertex v is defined to be
�

{γ[d] : d ∈ �δ(v)}
This is the net amount of the commodity that leaves v (see Figure 3.3).

We say γ satisfies conservation at v if the net outflow at v is zero.
It follows from (3.2) that an arc vector that satisfies conservation at every

vertex belongs to the cycle space. A vector θ in the cycle space of G is called
a circulation of G. We can interpret a circulation as a plan for transporting
a commodity through the graph in such a way that no amount is created or
consumed at any vertex. Circulations will play an essential role in our study of
max-flow algorithms for planar graphs.

32 CHAPTER 3. ELEMENTARY GRAPH THEORY

3.5 Embedded graphs

In solving the problem of the bridges of Königsberg, Euler discovered the power
of abstracting a topological structure, a graph, from an apparently geometric
structure. Perhaps it was this experience that enabled him to make another
discovery. Polyhedra had been studied in ancient times but nobody seems to
have noticed that every three-dimensional polyhedron without holes obeyed a
simple relation:

n−m+ φ = 2

where n is the number of vertices, m is the number of edges, and φ is the number
of faces. This equation is known as Euler’s formula.1

This equation does not describe the geometry of a polyhedron; in fact, one
can stretch and twist a polyhedron, and the formula will remain true (though
the edges and faces will get distorted). We presume it was Euler’s ability to
think beyond the geometry that enabled him to realize the truth of this formula.

Planar embedded graphs are essentially the mathematical abstraction of our
stretched and twisted polyhedra. Turning Euler’s observation on its head, we
will end up defining planar embedded graphs as those embedded graphs that
satisfy Euler’s formula. The traditional definition of planar embedded graphs is
geometric. Our definition of embedded graphs will not involve geometry at all.
Instead, we will use the notion of a combinatorial embedding. The advantage of
this approach is that it’s easier to prove things about combinatorial embeddings.
For that, we need to review permutations.

Permutations For a finite set S, a permutation on S is a function π : S −→

S that is one-to-one and onto. That is, the inverse of π is a function. A
permutation π on S is a cycle (sometimes called a cyclic permutation) if S can
be written as {a0, a1, . . . , ak−1} such that π(ai) = a(i+1) mod k for all 0 ≤ i <
k. According to the traditional notation for a cyclic permutation, we would
then write π as (a0 a1 . . . ak−1). This notation is not unique; for example,
(a1 a2 . . . ak−1 a0) represents the same permutation. The length of the cycle
is defined to be k.

Orbits The orbits of a permutation π are the equivalence classes under the
equivalence relation where c ∼ d if there exists k such that πk(c) = d. Here the
exponent indicates k-fold composition, so c ∼ d if one can get from c to d by
some number of applications of π.

Decomposition of a permutation into cyclic permutations For any
orbit of a permutation π, the restriction of π to that orbit is a cyclic permutation.
It follows that any permutation can be decomposed uniquely into nonempty
cyclic permutations.

1There is another “Euler’s formula,” eix = cosx+ i sinx.

3.5. EMBEDDED GRAPHS 33

a

b

c

d e

a,+1

e,-1
e,+1d,-1d,+1

c,-1

c,+1

b,-1

b,+1
a,-1

Figure 3.4: An embedded graph is illustrated. The cyclic permutation associ-
ated with the top-right vertex is ((d,+1) (e,+1) (c,−1)), and the one associated
with the bottom-left vertex is ((b,+1) (e,−1) (a,−1)). This drawing reflects the
convention that the cyclic associated with a vertex represents the counterclock-
wise arrangement of darts around the vertex. In the drawing on the right, the
individual darts are shown. This drawing is in accordance with the US “rules
of the road”: if the two darts are interpreted as two lanes of traffic, one travels
in the right lane.

3.5.1 Embeddings

The idea of a combinatorial embedding was implicit in the work of Heffter
(1891). Edmonds (1960) first made the idea explicit in his Master’s thesis, and
Youngs (1963) formalized the idea. A combinatorial embedding is sometimes
called a rotation system.

Here’s the idea. Suppose we start with an embedding of a graph in the
plane. For each vertex, walk around the vertex counterclockwise and you will
encounter edges in some order, ending up in the same place you started. The
embedding thus defines a cyclic permutation (called a rotation) of the edges
incident to the vertex. There is a sort of converse: given a rotation for each
vertex, there is an embedding on some orientable surface that is consistent with
those rotations.

Embedding For a graph G = (V,E), an embedding of G is a permutation π
of the set of darts E × {±1} whose orbits are exactly the parts of V . Thus π
assigns a cyclic permutation to each part of V , i.e. each vertex. For each vertex
v, we define π|v to be the cyclic permutation that is the restriction of π to v.

Our interpretation is that π|v tells us the arrangement of darts counterclockwise around
v in the embedding. Such an interpretation is useful in drawings of embedded graphs,
e.g. the drawing on the left of Figure 3.4.

The drawing on the right of Figure 3.4 should not be considered a drawing of an
embedded graph. This drawing shows the

We use V (π) to denote the set of orbits of π.

Embedded graph We define the pairG = (π,E) to be an embedded graph. To
be consistent with the definitions of unembedded graphs, we define E((π,E)) =

34 CHAPTER 3. ELEMENTARY GRAPH THEORY

E and V ((π,E)) = V (π). We also define π((π,E)) = π. The underlying graph
of an embedded graph G is defined to be the (unembedded) graph (V(G), E(G)).

�δG(S) For an embedded graphG and a set S of vertices, �δG(S) is a permutation
on the set of darts whose tails are in S and whose heads are not in S....MORE HERE

Faces To define the faces of the embedded graph, we define another permu-
tation dual(π) of the set of darts by composing π with rev:

dual(π) = π ◦ rev

Then the faces of the embedded graph (π,E) are defined to be the orbits of
dual(π). We typically denote dual(π) by π∗.

Consider, for example, the embedded graph of Figure 3.4.

π∗[(a,−1)] = π[(a,+1)]

= (d,−1)

π∗[(d,−1)] = (e,+1)

π∗
∗ [(e,+1)] = (a,−1)

so one of the faces is {(a,−1), (d,−1), (e,+1)}.
Note that, in the figure, the face’s cyclic permutation of darts traces out

a clockwise cycle of darts such that no edges are embedded within the cycle.
Consider, though, the face consisting of {(a,+1), (b,+1), (c,+1), (d,+1)}. In
the drawing, the darts of this face appear to form a counterclockwise cycle, and
the rest of the graph is embedded within this cycle. According to traditional
nomenclature for planar embedded graphs, this face is called the infinite face
because the edge-free region it bounds is infinite. However, imagine the same
embedding on the surface of a sphere; there is no infinite face. All faces have
equal status.

Since the combinatorial definition of embedded graphs and faces does not
distinguish any faces, it is often convenient to imagine that it describes an
embedding on a sphere (or other closed, orientable surface). However, for some
purposes, it is convenient to distinguish one face, and designate it as the infinite
face. Any face of the embedded graph can be chosen to be the infinite face, and
this freedom is exploited in the design of some algorithms.

]bf Remark: In the traditional, geometric definition of embedded graphs, one
considers the set of points that are not in the image of the embedding; a face is
a connected component of this set of points. This definition works for connected
graphs. However, for disconnected graphs, this definition leads to a face being
in a sense shared by two components of the graph. Such a face has a discon-
nected boundary. This is a flawed definition; we later mention a couple of bad
consequences of adopting this definition.

3.5. EMBEDDED GRAPHS 35

3.5.2 Euler characteristic and genus

Let n, m, and φ be the number of vertices, edges, and faces of an embedded
graph. The Euler characteristic of the embedding is n −m + φ. The genus of
the embedding is the integer g that satisfies the formula

n−m+ φ = 2− 2g

As we discussion in Chapter 4, an embedding is planar if its genus is 0

3.5.3 Remark on the connection to geometric embeddings

From a combinatorial embedding, one can construct a surface and an embedding
of the underlying graph in that surface. For each face (d1 . . . dr), construct
an r-sided polygon and label the sides d1, . . . , dr in clockwise order. Now we
have one polygon per face. For each edge e, glue together the two polygon
sides labeled with the two darts of e. The result can be shown to be a closed,
orientable surface. The graph is embedded in it.

Conversely, given any embedding of a graph G onto an closed, orientable
surface, define π by the rotations at the vertices. Then the embedding defined
by the gluing construction is homeomorphic to the given embedding. Thus, up
to homeomorphism the rotations determine the embedding. The proof of this
theorem is very involved, and won’t be covered here. Since for the purpose for
proofs we use combinatorial embeddings rather than geometric embeddings, the
theorem will not be needed.

3.5.4 The dual graph

For an embedded graph G = (π,E), the dual graph (or just dual) is defined to
be the embedded graph dual(G) = (dual(π), E). We typically denote the dual
of G as G∗.

In relation to the dual, the original graph G is called the primal graph (or
just the primal). Note that the vertices of G∗ are the faces of G. It follows from
the following lemma that the faces of G∗ are the vertices of G.

Lemma 3.5.1 (The dual of the dual is the primal.). dual(dual(G)) = G.

Problem 3.5.2. Prove Lemma 3.5.1.

36 CHAPTER 3. ELEMENTARY GRAPH THEORY

Figure 3.5: The the primal and the dual are shown together. The arcs and
vertices of the primal are drawn thick and solid and blue; the arcs and vertices
of the dual are drawn with thin double lines in red.

Formally, there is no need to say more about the dual. Each orbit of π∗ is a subset of
darts and so can be interpreted as a vertex, so (π∗, E) is an embedded graph. However,
for the sake of intuition, it is often helpful to draw the dual of an embedded graph
superimposed on a drawing of the primal, as shown in Figure 3.5. Each dual vertex
is drawn in the middle of a face of the primal, and, for each arc a of the primal, the
corresponding arc of the dual is drawn so that it crosses a at roughly a right angle.
We often adopt the convention of drawing G = (π,E) in such a way that the counter-
clockwise order of darts about a vertex corresponds to their order in the corresponding
permutation cycle of π. That is, for a dart d with tail v, the next counterclockwise
dart with tail v is π[d].
However, when we draw the dual superimposed on the primal as we have described,
the ordering of darts in a permutation cycle corresponds in the drawing to a clockwise
arrangement.

Is this definition necessary?
Face vectors Because the faces of G are the vertices of the dual G∗, a vertex
vector of G∗ is an assignment of numbers to the faces of G. We therefore refer
to it as a face vector of G.

3.5.5 Connectedness properties of embedded graphs

Lemma 3.5.3. For any face f of any embedded graph G, the darts comprising
f are connected.

Proof. Let d and d� be darts of f . π∗|f = (d0 d1 . . . dk−1) where d0 = d
. Suppose di = d�. We claim that d0 d1 d2 . . . di is a walk in G, which
proves the lemma. For j = 1, 2, . . . , i, we have dj = π∗(dj−1). By definition
of π∗, π(rev(dj−1)) = dj , so rev(dj−1) and dj have the same tail in G. Thus
headG(dj−1) = tailG(dj).

Corollary 3.5.4. If d and d� are connected in G then they are connected in G∗.

3.5. EMBEDDED GRAPHS 37

Proof. Let d0 d1 d2 . . . dk be a walk in G. For i = 1, 2, . . . , k, headG(di−1) =
tailG(di), so tailG(rev(di−1) = tailG(di), so rev(di−1) and di are in the same or-
bit of π. Hence rev(di−1) and di belong to the same face of π∗. By Lemma 3.5.3,
rev(di−1) and di are connected in G∗, so di−1 and di are connected in G∗.

Corollary 3.5.5 (Connectivity Corollary). For any embedded graph G, a set
of darts forms a connected component of G iff the same set forms a connected
component in G∗.

3.5.6 Cut-edges and self-loops

Lemma 3.5.6. If e is not a self-loop in an embedded graph G then e is not a
cut-edge in G∗.

Proof. Let f be a face of G∗ containing one of the two darts of e. Since e is not
a self-loop in G, f does not contain the other dart of e. Therefore e is not a
cut-edge in G∗.

We shall show later that the converse of Lemma 3.5.6 holds in planar em-
bedded graphs. However, more generally....

Problem 3.5.7. Show that the converse of Lemma 3.5.6 does not hold.

3.5.7 Deletion

Deleting a dart d̂ from a permutation π of E is obtaining the permutation π� of
E − {d̂} defined as follows.

π�[d] =

�
π[π[d]] if π[d] = d̂
π(d) otherwise

Deleting an edge ê consists of deleting the two darts of ê (in either order).
Let π� be the permutation obtained from π by deleting an edge ê, and let

G� = (π�, E − {ê}) be the corresponding embedded graph. It is easy to check
that the orbits of π� are the same as the orbits of π except that darts of ê have
been removed (possibly some orbits go away). Hence the underlying graph of
G� is the graph obtained by deleting ê from the underlying graph of G. We
write G− ê for the embedded graph obtained by deleting ê.

3.5.8 Compression (deletion in the dual) and contraction

Lemma 3.5.8. For an embedded graph G, if e is not a self-loop then the un-
derlying graph of dual(G∗ − e) is the graph obtained from the underlying graph
of G by contracting e.

Proof. The proof is illustrated in Figure 3.6. Let u and v be the endpoints of
e. Let a0, . . . , ak be the darts outgoing from u, and let b0, . . . , b� be the darts

38 CHAPTER 3. ELEMENTARY GRAPH THEORY

a0

b1

b2
b3

b4

b5

a5

a4

a3
a2

a1

b0

u

v

Figure 3.6: The primal graph G is shown in blue, and the dual G∗ is shown in
red. The edge e to be deleted from G∗ has two darts, a0 and b0, which are in
different faces of the dual G∗. When e is deleted, the two faces merge into one.

outgoing from v, where a0 and b0 are the darts of e. Since e is not a self-loop,
a0 does not occur among the bi’s and b0 does not occur among the ai’s.

In G∗, u is a face with boundary (a0 a1 · · · ak) and v is a face with boundary
(b0 b1 · · · b�). Let G∗� = (π∗�, E − {e}) be the graph obtained from G∗ by
deleting e.

dual(π∗�)[d] = π∗�
◦ rev(d)

=

�
π∗[π∗[rev(d)]] if π∗[rev(d)] is deleted
π[d] otherwise

(3.12)

For which two darts d is π∗[rev(d)] deleted? Since π∗[rev(d)] = π[d], the two
darts are π−1[a0], which is ak, and π−1[b0], which is b�.

Rewriting Equation 3.12, we obtain

dual(π∗�)[d] =






π∗[a0] if d = ak
π∗[b0] if d = b�
π[d] otherwise

=






b1 if d = ak
a1 if d = b�
π[d] otherwise

Thus dual(π∗�) has a permutation cycle (a1 a2 · · · ak b1 b2 · · · b�). This
permutation cycle defines the vertex obtained by merging u and v and removing
the edge e. All other vertices are unchanged. This shows that the underlying
graph is that obtained by contracting e.

In view of Lemma 3.5.8, we define compression of an edge e in an embedded
graph G to be deletion of e in the dual G∗. We denote this operation by G/e.
That is, G/e = dual(G∗ − e). Compression of an edge of an embedded graph
yields an embedded graph.

3.5. EMBEDDED GRAPHS 39

In the case when e is not a self-loop, we refer to the operation as contraction
of e.

What about the case of compression when e is a self-loop? We discuss this
later when we study planar graphs.

40 CHAPTER 3. ELEMENTARY GRAPH THEORY

Chapter 4

Planar embedded graphs

4.1 Planar embeddings

We say that an embedding π of a graph G = (V,E) is planar if it satisfies
Euler’s formula: n − m + φ = 2κ, where n=number of nodes, m=number of
arcs, φ=number of faces, and κ=number of connected components. In this
case, we say (π,E) is a planar embedded graph or plane graph.

Problem 4.1.1. Specify formally a smallest embedded graph that is not a planar
embedded graph. (This is not the assume as giving the smallest graph that has
no planar embedding.) You should give the embedding π and a drawing in which
the darts are labeled. (You will have to find some way of drawing the embedding
even though it is not planar.) Then give the dual in the same way, using a
permutation and a drawing.

The definition of planarity immediately implies the following lemma.

Lemma 4.1.2. π is a planar embedding of G iff, for each connected component
G� of G, the restriction π� of π to darts of G� is a planar embedding of G.

Lemma 4.1.3. The dual of a planar embedded graph is planar.

Problem 4.1.4. Prove Lemma 4.1.3.

4.2 Contraction preserves planarity

Our goal for this section is to show that contracting an edge preserves planarity.

Lemma 4.2.1. Let G be a planar embedded graph, and let e be an edge that is
not a self-loop. Then G/e is planar.

Proof. Let n,m, φ, κ be the number of vertices, edges, faces, and connected
components of G. By planarity, n −m + φ = 2κ. Let G� = dual(G∗ − e). Let

41

42 CHAPTER 4. PLANAR EMBEDDED GRAPHS

n�,m�, φ�, κ� be the number of vertices, edges, faces, and connected components
of G�. Clearly m� = m− 1. By Lemma 3.5.8, n� = n− 1. By Lemma 3.5.6, e is
not a cut-edge in G∗. It follows from the Cut-Edge Lemma (Lemma 3.3.6) that
κ� = κ. Therefore n� −m� + φ� = 2κ�.

4.3 Sparsity of planar embedded graphs

Lemma 4.3.1 (Sparsity Lemma). For a planar embedded graph in which every
face has size at least three, m ≤ 3n− 6, where m is the number of edges and n
is the number of vertices.

Problem 4.3.2. Prove the Sparsity Lemma, and show that the upper bound
is tight by showing that, for every integer n ≥ 3, there is an n-vertex planar
embedded graph whose number of edges achieves the bound.

Problem 4.3.3. Prove a lemma analogous to the Sparsity Lemma in which
faces of size one are permitted.

4.3.1 Strict graphs and strict problems

A face of size two consists of two parallel edges, edges with the same endpoints.
A face of size one consists of a self-loop. A graph with neither parallel edges
nor self-loops is a strict graph.Tutte, W. T. Graph Theory

as I Have Known It. Oxford,
England: Oxford University
Press, 1998.

For many optimization problems, it is sufficient to consider strict graphs.
Consider a optimization problem whose input includes a graph G and a dart
vector c. We say a graph optimization problem is strict if there is a constant-time
procedure that, given an instance I and a pair of parallel edges or a self-loop,
modifies the instance to eliminate one of the parallel edges or the self-loop, such
that, given an optimal solution for the modified instance, an optimal solution
for the original instance can be obtained in constant time.

Consider, for example, the problem of finding a minimum-weight spanning
tree . A self-loop can simply be eliminated because it will never appear in any
spanning tree. Given a pair of parallel edges, the one with greatest weight can
be eliminated since it will not appear in the minimum-weight spanning tree.
Therefore finding a minimum-weight spanning tree is a strict problem. Many
other problems discussed in this book, such as shortest paths, maximum flow,
the traveling salesman problem, and the Steiner tree problem, can similarly be
shown to be strict. For a strict problem, we generally assume that the input
graph is strict and therefore has at most three times as many edges as vertices.

We also discuss a problem, two-edge-connected spanning subgraph, that is
not, strictly speaking, strict. However, by using a similar technique we can
ensure that there are no triples of parallel edges. It follows that we can assume
for this problem that there are at most six times as many edges as vertices.

4.3. SPARSITY OF PLANAR EMBEDDED GRAPHS 43

4.3.2 Semi-strictness

Strictness is too strict. A weaker property, semi-strictness, can be more easily
established and maintained. We say an embedded graph is semi-strict if every
face has size at least three. The Sparsity Lemma applies to such graphs.

The strictness of a problem can be exploited more thoroughly to obtain an
algorithm.

Theorem 4.3.4. There is a linear-time algorithm to compute a minimum-
weight spanning tree in a planar embedded graph.

Here is a (not fully specified) algorithm for computing a minimum-weight
spanning tree.

def MST(G):
1 if G has no edges, return ∅

2 let ê be an edge of G contained in some MST of G
3 contract ê
4 eliminate some parallel edges
return {ê} ∪MST(G)

The choice of ê in Line 2 is guided by the following observation.

Lemma 4.3.5. Let G be a connected undirected graph with edge-weights, let v
be a vertex of G, and let e be a minimum-weight edge incident to v. Then there
is a minimum-weight spanning tree of G that contains e.

Problem 4.3.6. Prove Lemma 4.3.5, and then prove Theorem 4.3.4 by showing
how to implement MST for semi-strict planar embedded graphs in such a way
that each iteration takes constant time.

4.3.3 Orientations with bounded outdegree

An orientation of a graph is a set O of darts consisting of exactly one dart of
each edge. We say it is an α-orientation if each each vertex is the tail of at most
α darts.

Corollary 4.3.7 (Orientation Corollary). Every semi-strict planar embedded
graph has a 5-orientation.

Problem 4.3.8. Prove the Orientation Corollary.

One simple application of the Orientation Corollary is maintaining a repre-
sentation of a planar embedded graph to support queries of the form

“Is there an edge whose endpoints are u and v?”

Here is the representation. For each vertex u, maintain a list of u’s outgoing
darts. To check whether there is an edge with endpoints u and v, search in the
list of u and the list of v. Since each list has at most five darts, answering the
query takes constant time.

44 CHAPTER 4. PLANAR EMBEDDED GRAPHS

4.3.4 Maintaining a bounded-outdegree orientation for a
dynamically changing graph

For an unchanging graph, the same bound can be obtained for all graphs simply
by using a hash function. However, the orientation-based approach can be used
even when the graph undergoes edge deletions and contractions, and we will see
how this can be used in efficient implementations of other algorithms.

An orientation O is represented by an array adj[·] indexed by vertices. For
vertex v, adj[v] is a list consisting of the darts in O that are outgoing from v.

Let G be a semi-strict planar embedded graph, and let O be a 14-orientation
of G. Suppose G� is obtained from G by deleting an edge e. Then O −

{darts of e} is a 14-orientation for G�, and the representation adj[·] can be up-
dated as follows:

def Delete(e):
let v be the endpoint of e such that adj[v] contains a dart d of e
remove d from adj[v]

Suppose instead that G� is obtained from G by contracting e, and that G�

remains semi-strict. The vertex resulting from coalescing the endpoints of e
might have more than fourteen outgoing darts in O − {darts of e}. However, a
14-orientation of G� can be found as follows:

def Contract(e):
let u and v be the endpoints of e
let w be the vertex obtained by coalescing u and v
adj[w] := adj[u] ∪ adj[v]− {darts of e}
if |adj[w]| > 14,

S := {w}
while S �= ∅,
remove a vertex x from S
for each dart xy ∈ adj[x],
add yx to adj[y]
if |adj[y]| > 14, add y to S

adj[x] := ∅

4.3.5 Analysis of the algorithm for maintaining a bounded-
outdegree orientation

The key to analyzing the algorithm is the following lemma.

Lemma 4.3.9. For any semi-strict plane graph G, any orientation O of G, and
any vertex v, there is a path of size at most �log n(G)� − 1 from v to a vertex
whose outdegree is at most 3.

4.3. SPARSITY OF PLANAR EMBEDDED GRAPHS 45

Proof. Let Li denote the set of vertices reachable from v via paths of size at
most i consisting of darts in O. Assume for a contradiction that L�logn(G)�−1

contains no vertex of outdegree at most 3. We prove that |Li+1| > 2|Li| and
hence that |Li| > 2i for all i ≤ �log n(G)�. In particular, |L�logn(G)�| > n(G), a
contradiction.

Each vertex in Li has outdegree at least 4, so the sum of outdegrees is at
least 4|Li|. The plane graph induced by Li has at most 3|Li| − 6 edges, so
the heads of at least |Li| + 6 of the outgoing darts are not in Li. Therefore
|Li+1 − Li| ≥ |Li|+ 6.

We show a bound of O((k + n) log n) on the total time for maintaining a
14-orientation using Delete and Contract for k operations on an n-vertex
graph.

Consider a sequence of semi-strict planar embedded graphs

G0, . . . , Gk

such that, for i = 1, . . . , k, Gi is obtained from Gi−1 by a deletion or a contrac-
tion. Let n = maxi n(Gi).

Lemma 4.3.10. There exist 5-orientations O0, . . . ,Ok of G0, . . . , Gk respec-
tively, such that, for i = 1, . . . , k, there are at most log n edges that whose
orientations in Oi and Oi−1 differ.

Proof. We construct the sequence O0, . . . ,Ok backwards. Since Gk is semi-
strict, it has a 5-orientation. Let Ok be this 5-orientation.

Suppose we have constructed a 5-orientation Oi of Gi for some i ≥ 1. We
show how to construct a 5-orientation Oi−1 of Gi−1. If Gi was obtained from
Gi−1 by contraction of a non-leaf edge then Oi−1 ∩D(Gi−1) is a 5-orientation
of Gi−1 so we set Oi := Oi−1 ∩D(Gi−1).

If Gi was obtained from Gi−1 by deletion of an edge or contraction of a leaf
edge then we proceed as follows. Let uv be one of the darts of the edge in Gi−1

and not in Gi. Let O be the orientation Oi ∪ {uv}. Note that O might not be
a 5-orientation because u might have outdegree 6. However, by Lemma 4.3.9,
there is a path P of size at most �log n� − 1 consisting of darts in O from u to
a vertex of outdegree at most 3. Let Oi−1 be the orientation obtained from O

by replacing the darts of P with their reverses. This replacement reduces the
outdegree of u by one and increases the outdegree of the end of P , so Oi−1 is a
5-orientation.

Now we can analyze the use of Delete and Contract in maintaining an
14-orientation of a changing semi-strict plane graph G. The time for a delete
operation is O(1). The time for a contract operation is O(1) not including the
time spent in the while-loop of Contract. The time spent in the while-loop
is proportional to the number of changes to orientations of edges. The next
theorem proves that the number of such changes is O(m+k log n), which shows
that the total time is also O(m+ k log n).

46 CHAPTER 4. PLANAR EMBEDDED GRAPHS

Theorem 4.3.11. As G is transformed from G0 to G1 to · · · to Gk, the total
number of changes to the orientation is O(n+ k log n).

Proof. Lemma 4.3.10 showed that there are 5-orientations O0,O1, . . . ,Ok of
G0, G1, . . . , Gk such that each consecutive pair of orientations differ in at most
�log n� edges. When G is one of G0, G1, . . . , Gk, we denote by O[G] the corre-
sponding 5-orientation.

We use Õ to denote the orientation maintained by the algorithm (and rep-
resented by adj[·]).

For the purpose of amortized analysis, we define the potential function

Φ(G, �O) = | �O −O[G]|

We say an edge of G is good if �O and O[G] agree on its orientation, and bad
otherwise. Then Φ is the number of bad edges. The value of the potential is
always nonnegative and is always at most m, the number of edges in G0.

Consider the effect on Φ of a delete or contract operation. Since the operation
is accompanied by a change in O[G] in the orientations of at most log n edges,
the potential Φ goes up by at most log n. Since there are k operations, the total
increase due to these changes is at most k log n.

The loop in Contract also has an effect on the value of the potential. In
each iteration, a vertex x with outdegree greater than 14 is removed from S and
the outgoing darts of x are replaced in �O with their reverses. The replacement
turns good edges into bad edges and bad edges into good edges. Before the
replacement, at most five of x’s outgoing darts were in O[G] so at most five
edges were good. Thus at most five good edges turn to bad, and at least
15−5 = 10 bad edges turn to good. The net reduction in Φ is therefore at least
10− 5 = 5.

Since the initial value of Φ is at most m and the increase due to operations
(not counting the loop) is at most k log n, the total reduction in Φ throughout
is at most m+ k log n. Since each iteration of the loop reduces Φ by at least 5,
the number of iterations is at most m+k logn

5 .
Each iteration changes the orientations of many edges; we next analyze the

total number of orientation changes. Since each iteration changes at most five
edges from good to bad, the total number of edges changed from good to bad
is as at most m + k log n. Initially the number of bad edges is at most m, so
there are at most 2m + k log n changes of edges from bad to good. Thus the
total number of orientation changes is 3m+ 2k log n.

1

4.4 Cycle-space basis for planar graphs

Lemma 4.4.1. Let G be a planar embedded graph. For each vertex v of G and
each vertex f of G∗ η(v) · η(f) = 0.

4.4. CYCLE-SPACE BASIS FOR PLANAR GRAPHS 47

Proof. Let D− be the set of darts in f having v as head. Let D+ be the set of
darts in f having v as tail. Since η(v) assigns 1 to darts in D+ and -1 to darts in
D−, the dot product is |D+|− |D−|. Note that, for each d ∈ D−, π∗(d) belongs
to D+, and, for each d ∈ D+, (π∗)−1(d) belongs to D−. Hence |D+| = |D−|.
This shows the dot product is zero.

Corollary 4.4.2 (Cut-Space/Cycle-Space Duality). The cut space of G∗ is the
cycle space of G.

Proof. For simplicity, assume G is connected. Let v∞ and f∞ be vertices of G
and G∗, respectively. A basis for the cut space of G is

{η(v) : v ∈ V (G)− {v∞}}

and a basis for the cut space of G∗ is

{η(f) : f ∈ V (G∗)− {f∞}}

By Lemma 4.4.1, the vectors in the basis for the cut space of G∗ are orthogonal
to the vectors in the basis for the cut space of G, so the former belong to the
orthogonal complement of the cut space of G, i.e. to the cycle space of G.
Moreover, the former basis has cardinality exactly one less than the number of
faces in G, which equals |E(G)|−|V (G)|+1, which is the dimension of the cycle
space of G. This proves the corollary.

MacLane [S. MacLane, “A combinatorial condition for planar graphs,” Fund. Math.
28 (1937), p.22–32.] in fact formulated a criterion for planarity based on cycle-cut
duality.

4.4.1 Representing a circulation in terms of face potentials

Recall from Section 3.4.5 that a vector in the cycle space of G is called a cir-
culation in G. It follows from Cut-Space/Cycle-Space duality (Corollary 4.4.2)
that an arc vector θ is a circulation iff it can be written as a linear combination
of basis vectors

θ =
�

{ρfη(f) : f ∈ V (G∗)− {f∞}}

The sum does not include a term corresponding to f∞. It is convenient to adopt
the convention that ρf∞ = 0 and include the term ρf∞ρ(f∞) in the sum. We
can then represent the coefficients by a face vector ρ, and so write

θ =
�

{ρ[f]η(f) : f ∈ V (G∗)} (4.1)

Even if ρ[f∞] �= 0, since η(f∞) is a circulation, the sum 4.1 is a circulation. In
this context, we refer to the coefficients ρ[f] as face potentials.

We can write the relation between a circulation and face potentials more
concisely using the dart-vertex incidence matrix AG∗ of the dual G∗. (We
could call this the dart-face incidence matrix of G.)

θ = AG∗ρ

48 CHAPTER 4. PLANAR EMBEDDED GRAPHS

4.5 Interdigitating trees

Lemma 4.5.1. Suppose G is a connected plane graph with a spanning tree T .
Every cycle in G∗ has an edge in T .

Proof. Let C∗ be a cycle in G∗. Since η(C∗) is in the cycle space of G∗, it is
in the cut space of G by Cut-Space/Cycle-Space duality, so it can be written in
terms of the fundamental cut basis of G with respect to T :

η(C∗) =
�

e∈T

αeη(fundamental cut of e)

Since the left-hand side is nonzero, there is at least one edge ê ∈ T such that
αê �= 0. Since different edges of T are not in each other’s fundamental cuts, it
follows that the sum assigns a nonzero value to a dart of ê. This proves the
lemma.

Corollary 4.5.2. Let G be a plane graph. If T is a spanning tree of G then the
edges E(G)− E(T) form a spanning tree of G∗.

Problem 4.5.3. Prove Corollary 4.5.2.

Maybe this goes in solution
section at end of book! If T is a spanning tree of a plane graph Gπ, we use T ∗ to denote the spanning

tree of G∗ whose edges are E(G)− E(T). We refer to T ∗ as the dual spanning
tree with respect to T in Gπ. The trees T and T ∗ are called interdigitating trees.Should have figure of two in-

terdigitating hands. Interdigitating trees combined with rootward computations give rise to sim-
ple algorithms for some problems in planar graphs, as illustrated in the following
problems. Beware, however, that the choice of the root of T ∗ might be signifi-
cant.

Problem 4.5.4. Using rootward computation (Section 1.1) on the dual tree,
give a simple linear-time algorithm for the following problem.

• input: a planar embedded graph G, a spanning tree T , and a vertex r

• output: a table that, for each nontree edge uv of G, gives the least common
ancestor of u and v in T rooted at r

Problem 4.5.5. Using the result of Problem 4.5.4, give a simple linear-time
algorithm for the following problem.

• input: a planar embedded graph G with edge-weights and a spanning tree
T

• output: a table that, for each nontree edge e of G, gives the total weight
of the fundamental cycle of e with respect to T .

4.6. SIMPLE-CUT/SIMPLE-CYCLE DUALITY 49

Problem 4.5.6. Show that a connected planar graph G with edge-weights can
be represented so as to support the following operations in O(log n) amortized
time:

• Given an edge e of G, determine whether e is in a minimum-weight span-
ning tree of G.

• Given an edge e of G and a number λ, set the weight of e to λ.

4.6 Simple-cut/simple-cycle duality

Lemma 4.6.1 (Fundamental-Cut/Fundamental-Cycle Duality). Let G be a
connected planar embedded graph with spanning tree T and let ê be an edge
of T . Then

{darts of the fundamental cut of ê in G with respect to T}

= {darts of the fundamental cycle of ê in G∗ with respect to T ∗
}

Proof. Let C∗ be the fundamental cycle of ê in G∗ with respect to T ∗. As in
the proof of Lemma 4.5.1, we write η(C∗) in terms of the fundamental cut basis
of G with respect to T :

η(C∗) =
�

e∈T

αeη(fundamental cut of e)

Since different edges are not in each other’s fundamental cuts, for each edge
e ∈ T , if αe �= 0 then η(C∗) assigns nonzero values to the darts of e. However,
the only edge of T with darts in C∗ is ê, so the sum in the right-hand side
is just αêη(fundamental cut of ê). Furthermore, since the primary dart of ê
is assigned 1 by both η(C∗) and η(fundamental cut of ê), we conclude that
αê = 1. Thus η(C∗) = η(fundamental cut of ê), which proves the lemma.

Theorem 4.6.2 (Simple-Cycle/Simple-Cut Theorem). Let G be a planar em-
bedded graph. A nonempty set of darts forms a simple cycle in G∗ iff the set
forms a simple cut in G.

Proof. We prove the theorem for the case in which G is connected. The result
immediately follows for disconnected graphs as well.

(only if) Let C∗ be a simple cycle in G∗. Let ê be an edge of C∗, and let P ∗ be
the simple path in G∗ such that C∗ = P ∗ ◦ ê. By the matroid property of forests
(Corollary 3.2.3), there exists a spanning tree T ∗ of G∗ containing the edges of
P ∗. Note that C∗ is the fundamental cycle of ê with respect to T ∗. Therefore, by
Fundamental-Cut/Fundamental-Cycle Duality (Lemma 4.6.1), the darts form-
ing C∗ are the darts forming a fundamental cut in G, and such a cut is a simple
cut by the Fundamental-Cut Lemma (Lemma 3.3.2).

(if) Let S1 be a set of vertices of G such that �δG(S1) is a simple cut. Let
S2 = V (G)− S1. By definition of simple cut in a connected graph, for i = 1, 2,

50 CHAPTER 4. PLANAR EMBEDDED GRAPHS

the vertices of Si are connected; let Ti be a tree connecting exactly the vertices
of Si. Let d be a primary dart such that d is in �δ(S1) or �δ(S2), and let e be
the edge of d. Let T = T1 ∪ T2 ∪ {e}. Then �δ(S1) or �δ(S2) is a fundamental
cut with respect to T , and so by Fundamental-Cut/Fundamental-Cycle Duality
(Lemma 4.6.1), its darts form a simple cycle in G∗.

4.6.1 Compressing self-loops

The Simple-Cycle/Simple-Cut Theorem immediately yields the following.

Corollary 4.6.3. If e is a self-loop in a planar embedded graph G then e is a
cut-edge in G∗.

We use the corollary to help analyze the effect of compressing a self-loop in
a planar graph.

Lemma 4.6.4. If G is a planar embedded graph and e is a self-loop then G/e
is planar.

Proof. Let n,m, φ, κ be the number of vertices, edges, faces, and connected
components of G. By planarity, n − m + φ − 2κ = 0. Let n�,m�, φ�, κ� be the
numbers for G� = dual(G∗ − e). In order to prove that G� is planar, it suffices
to show that n� −m� + φ� − 2κ� = n−m+ φ− 2κ.

Clearly m� = m− 1. By Corollary 4.6.3, e is a cut-edge in G∗.
First suppose each endpoint of e in G∗ has degree greater than one. In

this case, deletion of e does not cause the elimination of its endpoints in G∗.
Therefore φ� = φ. Since e is a cut-edge, deleting it increases the number of
connected components, so κ� = κ + 1 (using the Connectivity Corollary, which
is Corollary 3.5.5). Let v be the common endpoint of the self-loop e in G, and
let the corresponding permutation cycle be (d0 d1 · · · dk · · · d�), where d0 and
dk are the darts corresponding to e. In G∗, v is a face. Deletion of e in G∗

breaks the face up into (d0 d1 · · · dk−1) and (dk+1 · · · d�) and leaves all other
faces alone. Since faces of G∗ are vertices of G, we infer n� = n+ 1. Thus

n�
−m� + φ�

− 2κ� = (n+ 1)− (m− 1)− φ− 2(κ+ 1) = n−m− φ− 2κ

If exactly one of the endpoints of e in G∗ has degree one, that endpoint will
disappear when e is deleted, so φ� = φ−1, and there is no change to the number
of connected components. In this case,

n�
−m� + φ�

− 2κ� = n− (m− 1) + (φ− 1)− 2κ = n−m+ φ− 2κ

If both endpoints of e in G∗ have degree one, deleting e eliminates both
endpoints (vertices of G∗), a connected component, and a face of G∗, so φ� =
φ− 2, κ� = κ− 1, and n� = n− 1.

n�
−m� + φ�

− 2κ� = (n− 1)− (m− 1) + (φ− 2)− 2(κ− 1) = n−m+ φ− 2κ

4.7. FACES, EDGES, AND VERTICES ENCLOSED BY A SIMPLE CYCLE51

4.6.2 Compression and deletion preserve planarity

Combining Lemma 4.6.4 with Lemma 4.2.1 shows that compression preserves
planarity. Since compression in the dual is deletion in the primal, it follows that
deletion preserves planarity. We state these results as follows

Theorem 4.6.5. For a planar embedded graph G and an edge e, G−e and G/e
are planar embedded graphs.

Figure 4.1 shows some examples of compressing edges.

Figure 4.1: Examples of compressing an edge ê in G (solid lines and filled
vertices), i.e. deleting ê from G∗ (dashed lines and open vertices).

Compressing a self-loop in a planar embedded graph is an interesting opera-
tion. The graph can be divided into two parts, the part enclosed by the self-loop
and the part not enclosed. These parts have only one vertex in common, namely
the endpoint of the self-loop. Compression has the effect of duplicating the com-
mon vertex, and attaching each part to its own copy.

4.7 Faces, edges, and vertices enclosed by a sim-
ple cycle

Let C be a simple cycle of darts in a connected plane graph Gπ. Let f∞ be an
arbitrary face, designated the infinite face. We say the cycle C encloses a face
f with respect to f∞ if E(C) = δ(S) where f ∈ S, f∞ �∈ S.

Using the Path/Cut Lemma, we immediately obtain

Proposition 4.7.1. Let Gπ be a connected plane graph, and let C be a cycle
of Gπ. Every path in G∗ from a face enclosed by C to a face not enclosed by C
goes through an edge of C.

52 CHAPTER 4. PLANAR EMBEDDED GRAPHS

We say C encloses an edge or vertex if C encloses a face whose boundary
contains the edge or vertex, and strictly encloses the edge or vertex if in addition
the edge or vertex is not on C.

Using Proposition 4.7.1 and Corollary 62.of Lecture 2, we obtain

Proposition 4.7.2. Let Gπ be a connected plane graph, and let C be a cycle
of Gπ. Every path in G from a vertex enclosed by C to a face not enclosed by
C goes through a vertex of C.

The interior of a cycle C is the subgraph consisting of edges and vertices
enclosed by C. The exterior is the subgraph consisting of edges and vertices not
strictly enclosed by C. The strict interior and exterior are similarly defined.

4.8 Crossing

Two kinds of crossing: sets that cross (violate laminarity) and paths/cycles that
cross in a graph sense.

4.8.1 Crossing paths

4.8.2 Non-self-crossing paths and cycles

4.9 Representing embedded graphs in implemen-
tations

It makes sense to base our computer representation of embedded graphs on the
mathematical representation. We will even use this representation when we
don’t care about the embedding.

For the purpose of specifying algorithms, our finite set E will consist of
positive integers. For example, if |E| = m then we can use the integers 1 . . .m.
We also need a way to represent darts, remembering that each element of E
corresponds to two darts. We use some convention to represent each dart as an
integer. (Two ways: use +/- or use a low-order bit). A permutation π of darts
is represented by a pair of arrays, one for the forward direction and one for the
backward direction. That way, it takes O(1) time to go from a dart d to the
darts π[d] and π−1[d].Must first discuss deleting an

arc from an embedded graph. We also have to discuss the implementation of arc deletion. It will be nec-
essary to delete arcs in constant time. The key is to allow some integers to
become unused.

Deletion of an arc consists of deletion of its two darts from the representation
of the permutation π.

Chapter 5

Separators in planar graphs

5.1 Triangulation

We say a planar embedded graph is triangulated if each face’s boundary has at
most three edges.

Problem 5.1.1. Provide a linear-time algorithm that, given a planar embedded
graph G, adds a set of artificial edges to obtain a triangulated planar embedded
graph. Show that the number of artificial edges is at most twice the number of
original edges.

5.2 Weights and balance

Let G be a planar embedded graph, and let α be a number between 0 and 1.
An assignment of nonnegative weights to the faces, vertices, and edges of G is
an α-proper assignment if no element is assigned more than α times the total
weight. A subpartition of these elements is α-balanced if, for each part, the sum
of the weights of the elements of that part is at most α times the total weight.

5.3 Fundamental-cycle separators

Let G be a plane graph. A simple cycle C of G defines a subpartition consisting
of two parts, the strict interior and the strict exterior of the cycle. If the
subpartition is α-balanced, we say that C is an α-balanced cycle separator. The
subgraph induced by the (nonstrict) interior, i.e. including C, is one piece with
respect to C, and the subgraph induced by the (nonstrict) exterior is the other
piece.

First we give a result on fundamental-cycle separators that are balanced
with respect to an assignment of weights only to faces.

Lemma 5.3.1 (Fundamental-cycle separator of faces). For any plane graph G,
1
4 -proper assignment of weights to faces, and spanning tree T of G such that the

53

54 CHAPTER 5. SEPARATORS IN PLANAR GRAPHS

boundary of each face of G has at most three nontree edges, there is a nontree
edge ê such that the fundamental cycle of ê with respect to T is a 3

4 -balanced
cycle separator for G.

Figure

Proof. Let T ∗ be the interdigitating tree, the spanning tree of G∗ consisting
of edges not in T . The vertices of T ∗ are faces of G, and are therefore as-
signed weights. The property of T ensures that T ∗ has degree at most three.
Using Lemma 1.3.1, let ê be an edge separator in T ∗ of vertex weight. By
the Fundamental-Cut Lemma (Lemma 3.3.2), the fundamental cut of ê in G
with respect to T ∗ is a simple cut in G∗ (each side of which has weight at
most three-fourths of the total) so is, by the Simple-Cycle/Simple-Cut Theo-
rem (Theorem 4.6.2), a simple cycle in G that encloses between one-fourth and
three-fourths of the weight.

Assignments of weight to faces, vertices, and edges can also be handled:

Lemma 5.3.2. There is a linear-time algorithm that, given a triangulated plane
graph G, a spanning tree T of G, and a 1

4 -proper assignment of weights to faces,
edges, and vertices, returns a nontree edge ê such that the fundamental cycle of
ê with respect to T is a 3

4 -balanced cycle separator for G.

Problem 5.3.3. Prove Lemma 5.3.2 using Lemma 5.3.1

We can give a better balance guarantee if we are separating just edge-weight.

Lemma 5.3.4 (Fundamental-cycle separator of edges). There is a linear-time
algorithm that, given a triangulated plane graph G with a 1

3 -proper assignment
of weights to edges, and a spanning tree T , returns a nontree edge ê such that
the fundamental cycle of ê with respect to T is a 2

3 -balanced cycle separator for
G.

Problem 5.3.5. Prove Lemma 5.3.4 by following the proof of Lemma 5.3.1 but
using tree edge separators of vertex/edge weight (Lemma 1.3.3) instead of tree
edge separators of vertex weight (Lemma 1.3.2).

5.4 Breadth-first search

Let G be a connected, undirected graph, and let r be a vertex. For i = 0, 1, 2, . . .,
we say a vertex v of G has level i with respect to r and we define level(v) = i if
i is the minimum number of edges on an r-to-v path in G. (That is, the level of
a vertex v is the distance of v from r where the edges are assigned unit length.)
For i = 0, 1, 2, . . . , let Li(G, r) denote the set of vertices having level i.

An edge uv is said to have level i (and we write level(uv) = i) if u has level i
and v has level i + 1. (An edge whose endpoints have the same level is not
assigned a level.)

Breadth-first search from r is a linear-time algorithm that finds

5.5. O(
√
N)-VERTEX SEPARATOR 55

Figure 5.1: Shows the levels of breadth-first search.

• the levels of vertices and edges, and

• a spanning tree rooted at r such that, for each vertex v other than r, the
parent of v has level one less than that of v (a breadth-first-search tree).

Need to elaborate on caption
for Figure 5.1. Use copies of
the figure to show the forest.5.5 O(

√
n)-vertex separator

We use fundamental-cycle separators to prove a fundamental separator result
for planar graphs. 2

Theorem 5.5.1 (Planar-Separator Theorem with Edge-Weights). There is a
linear-time algorithm that, for a plane graph G and 1

3 -proper assignment of
weights to edges, returns subgraphs G1, G2 such that

• E(G1), E(G2) is a partition of E(G),

• The partition E(G1), E(G2) is
2
3 -balanced, and

• |V (G1) ∩ V (G2)| ≤ 4
�
|V (G)|

The subgraphs G1, G2 are called the pieces. The set V (G1) ∩ V (G2) of
vertices common to the two subgraphs is called the vertex separator.

The Planar-Separator Theorem can be used with an assignment of weight
to vertices instead of edges. In this case, in evaluating the resulting balance, we
do not count the weight of the vertices in the vertex separator.

56 CHAPTER 5. SEPARATORS IN PLANAR GRAPHS

Theorem 5.5.2 (Planar-Separator Theorem with Vertex-Weights). There is
a linear-time algorithm that, for a plane graph G and 1

3 -proper assignment of
weights to vertices, returns subgraphs G1, G2 such that

• E(G1), E(G2) is a partition of E(G),

• The subpartition V (G1)− V (G2), V (G2)− V (G1) of V (G) is 2
3 -balanced,

and

• |V (G1) ∩ V (G2)| ≤ 4
�
|V (G)|

Problem 5.5.3. Show that the Vertex-Weights version (Theorem 5.5.2) follows
easily from the Edge-Weights version (Theorem 5.5.1).

3

Now we give the proof of the Edge-Weights version. Let w(·) denote the
edge-weight assignment. Assume for notational simplicity that the sum of edge-
weights is 1. The algorithm first performs a breadth-first search of G from r.
Let T be the breadth-first-search tree. Let Vi denote the set of vertices at level
i.

5.5.1 Finding the middle level

Next, the algorithm finds the integer i0 such that

• w({uv : u and v both have level < i0}) ≤ 1/2, and

• w({uv : u and v both have level > i0}) ≤ 1/2.

5.5.2 Finding small levels

Next, the algorithm finds the greatest level i− ≤ i0 such that |Vi− | ≤
√
n, and

the least level i+ ≥ i0 such that |Vi+ | ≤
√
n. Since |V0| = 1 and |Vn| = 0, the

levels i− and i+ exist.
Since each of levels i− + 1, i− + 2, . . . , i− + (i0 − i− − 1) has greater than

√
n vertices and each of levels i0, i0 + 1, . . . , i0 + (i+ − i0 − 1) has greater than

√
n vertices, the total number of vertices among these levels is greater than

(i+ − i− − 1)
√
n, so i+ − i− − 1 < n/

√
n =

√
n.

5.5.3 Extracting a middle graph and low-depth spanning
tree

Next, the algorithm obtains a graph G� from G as follows:

1. Delete every vertex whose level is greater than i+.

2. For each edge uv of T such that the levels of u and v are at most i−,
contract uv.

5.6. BICONNECTIVITY 57

Note that G� is a planar embedded graph.
Let T � be the set of edges of T that remain in G�. The result of Line 2 is

that all vertices having level at most i− are coalesced into a single vertex r�. For
any vertex v in G�, therefore, there is a v-to-r� path through T � that consists of
at most i+ − i− edges.

5.5.4 Separating the middle graph

The algorithm adds artificial zero-weight edges to G� to triangulate it, and,
following Lemma 5.3.4, finds a 2

3 -balanced fundamental-cycle separator C with
respect to T �.

Let E1 be the set of edges whose endpoints have level at most i−, let E2 be
the set of edges having at least one endpoint at level greater than i+, let E3

be the set of edges of G� assigned to the interior of C, and let E4 be the set of
edges of G� assigned to the exterior.

By choice of i0, for j = 1, 2 we have w(Ej) ≤ 1/2. By the properties of the
separator C, for j = 3, 4 we have |Ej | ≤

2
3w(E(G�)) ≤ 2

3 .
For j = 1, 2, 3, or 4, if w(Ej) ≥

1
3 then the algorithm sets G1 := Ej and

G2 := all other edges of G. Since 1
3 ≤ w(Ej) ≤

2
3 , it follows that w(E(G1)) ≤

2
3

and w(E(G2)) ≤
2
3 .

Assume therefore that w(Ej) <
1
3 for j = 1, 2, 3, 4. Let j be the minimum

integer such that w(E1)+ · · ·+w(Ej) ≥
1
3 . Then w(E1)+ · · ·+w(Ej−1) <

1
3 and

w(Ej) <
1
3 so w(E1)+ · · ·+w(Ej) <

2
3 . The algorithm sets G1 := E1 ∪ · · · ∪Ej

and G2 := all other edges of G. Then w(E(G1)) ≤
2
3 and w(G2) ≤

2
3 .

5.5.5 Analysis
Show that the separator re-
ally separates.We have completed the description of the algorithm, and have ensured the

balance property of the separator. It is easy to verify that E1, E2, E3, and E4

are disjoint, which implies that G1 and G2 are edge-disjoint.
In the uncontracted graph G, the vertices of the separator C comprise two

leafward tree paths P1, P2 originating at vertices at level i− and terminating at
two vertices whose levels are in the range [i−, i+], possibly joined by an edge of
G.

The only vertices that are endpoints of edges in distinct sets Ei and Ej are
the vertices at level i−, the vertices at level i+, and the vertices comprising P1

and P2. There are at most
√
n in each of the first two categories. The number

in the third category that are not in the other two is at most 2(i+ − i− − 1),
which in turn is at most 2

√
n. This completes the proof of the theorem.

Problem 5.5.4. Show how to modify the algorithm so that the size of the sepa-
rator is at most c

√
n for some constant c < 4. Hint: The size criterion used to

decide whether a level i qualifies to be designated level i− can depend on |i0−i−|.

Give problem on fast algo-
rithm for finding separators.

58 CHAPTER 5. SEPARATORS IN PLANAR GRAPHS

Figure 5.2: The diagram on the left shows a Venn diagram of some noncrossing
sets, and the diagram on the right shows the corresponding rooted forest (a tree
in this case).

5.6 Biconnectivity
Define biconnectivity and
prove this result. Also per-
haps describe the block-cut
tree.

Lemma 5.6.1. If a planar embedded graph G is biconnected then so is the
planar dual G∗.

Lemma 5.6.2. If G is a planar embedded biconnected graph then every face is
a simple cycle.

5.7 Noncrossing families of subsets

Two nonempty sets A and B cross if they are neither disjoint nor nested, i.e. if
A ∩B �= ∅ and A �⊆ B and B �⊆ A.

A family C of nonempty sets is noncrossing (also called laminar) if no two
sets in C cross.

As illustarted in Figure 5.2, under the subset relation, a noncrossing family
C of sets forms a rooted forest FC . That is, each set X ∈ C is a node, and its
ancestors are the sets in C that include X as a subset. To see that this is a
forest, let X1 and X2 be two supersets of X in C. Since X is nonempty, X1 and
X2 intersect, so one must include the other. This shows that the supersets of
X are totally ordered by inclusion. Hence if X has any proper supersets, it has
a unique minimal proper superset, which we take to be the parent of X.

5.8 The connected-components tree with respect
to breadth-first search

For a connected graph G, a vertex r, and an integer i ≥ 0, let L+
i (G, r) denote

the set of vertices v having level at least i, and let K
+
i (G, r) denote the set of

connected components of the subgraph of G induced by L+
i (G, r). We refer to a

connected component K ∈ K
+
i (G, r) as a level-i BFS component, and we define

level(K) = i.

Lemma 5.8.1. For any connected graph G and vertex r, the BFS components�
i K

+
i (G, r) form a noncrossing family of subsets of V (G).

Proof. Let K1 and K2 be two BFS components. Assume without loss of gener-
ality that level(K1) ≤ level(K2). If any vertex of K2 belongs to K1 then every
vertex of K2 belongs to K1.

5.8. THE CONNECTED-COMPONENTS TREEWITH RESPECT TO BREADTH-FIRST SEARCH59

It follows from Lemma 5.8.1 that the vertex sets of BFS components of G
form a rooted forest with respect to the subset relation.

Lemma 5.8.2. The parent of a level-i BFS component is a level-i − 1 BFS
component if i > 0.

Proof. Let K be a level-i BFS component where i > 0. Since the level-i BFS
components are disjoint, K is not contained in any other level-i BFS component.
Since K must contain some level-i vertex v of G, K is not contained in any level-
j BFS component where j > i. Let u be the parent of v in the BFS tree. Then
the level-i− 1 BFS component K � containing u must contain K. Furthermore,
for j ≤ i−1, any level-j BFS component that contains K must also contain K �.
This shows that K � is the uniqe minimal proper superset of K among the BFS
components.

Lemma 5.8.2 shows that a root of the forest of BFS components must have
level 0. Since we assume G is connected, there is only one level-0 BFS compo-
nent, namely the whole graph G, so it is the only root, and the forest is in fact
a tree. We call it the BFS component tree, and we denote it by T (G, r)

Lemma 5.8.3. The cuts {δG(K) : K ∈ K
+
i (G, r), i ≥ 0} are edge-disjoint.

Proof. Suppose K is a level-i BFS component. Let uv be an edge of δG(K)
where u ∈ V (K). Then the level of v is less than i (else v would belong to K).
Breadth-first search ensures that the levels of the endpoints of an edge differ by
at most one, so level(v) = i − 1. Therefore, for any BFS component K � such
that uv ∈ δG(K �), we must have level(K �) = i and K � must contain u, hence
K � = K.

Lemma 5.8.4. For any BFS component K ∈ K
+
i (G, r), δG(K) is a simple cut.

Proof. Clearly K is connected in G. We need to show that V (G) − K is also
connected in G. We show that, for every vertex v ∈ V (G) − K other than r,
there is an adjacent vertex u whose breadth-first-search level is less than that
of v. An induction by breadth-first-search level then shows that every vertex in
V (G)−K is connected to r, and hence that V (G)−K is connected.

Let T be a breadth-first-search tree of G rooted at r. For any vertex v ∈

V (G) − K other than r, let u be the parent of v in T . By definition of the
breadth-first-search tree, the level of u is less than that of v.

If u belongs to K then the level of u is at least i, so the level of v would
also be at least i. Since v and u are adjacent, v would belong to K as well, a
contradiction. Therefore u does not belong to K.

Lemma 5.8.5 (BFS-Component-Tree Construction). There is a linear-time
algorithm to construct the BFS component tree T (G, r).

Problem 5.8.6. Prove the BFS-Component-Tree Construction Lemma.

60 CHAPTER 5. SEPARATORS IN PLANAR GRAPHS

5.9 Cycle separators

Theorem 5.9.1 (Planar-Cycle-Separator Theorem). There is a linear-time al-
gorithm that, for any simple undirected biconnected triangulated plane graph
and any 3

4 -proper assignment of weights to faces, edges, and vertices, returns a
3
4 -balanced cycle separator C of size at most

√
8m.

4

Assume for notational simplicity that the total weight is 1 and that weight
is assigned only to faces. The algorithm first designates some face as f∞ and
performs breadth-first search from f∞ in the planar dual G∗.

5.9.1 Finding the middle node

The algorithm constructs the BFS Component tree T (G∗f∞). Using a rootward
computation, the algorithm computes

ŵ(K) :=
�

{w(f) : f ∈ V (K)}

for each BFS component. The algorithm then applies the Leafmost-Heavy-
Vertex Lemma with α = 1/2 to select a BFS component K0. Let i0 = level(K0).

5.9.2 Finding small levels

The next step is similar to a step in the algorithm of the Planar-Separator
Theorem. The algorithm will select two levels that are small. However, for
simplicity we count edges instead of vertices.

Let Ei denote the set of edges at level i. Next the algorithm finds the greatest
level i− ≤ i0 such that |Ei− | ≤

�
m/2, and the least level i+ ≥ i0 such that

|Ei+| ≤
�
m/2. Since |E0| = 0 and |En| = 0, the levels i− and i+ exist.

Lemma 5.9.2. i+ − i− − 1 ≤
√
2m

Proof. Since each of levels i−+1, i−+2, . . . , i+−1 has greater than
�

m/2 edges,

the total number of edges among these levels is greater than (i+−i−−1)
�

m/2,

so i+ − i− − 1 < m/
�
m/2.

5.9.3 Extracting a middle graph and a low-depth spanning
tree

We assume in the following that i− > 0. (The case i− = 0 is similar but
simpler.) Let K̂ be the level-i− BFS component that includes K0. Lemma 5.8.4
shows that the set of vertices not in K̂ is connected. The algorithm performs
contractions in G∗ to merge these vertices into a single vertex x0 and assigns it
a weight equal to the sum of the weights of the vertices it replaced.

Let K1, . . . ,Kp be the level-i+ BFS components contained in K̂. The algo-
rithm similarly merges the vertices of each Kj into a single vertex xj and assigns

5.9. CYCLE SEPARATORS 61

it a weight equal to the sum of the weights of the vertices it replaced. Let H∗

be the resulting graph.
By choice of ...,

�
m/2 is an upper bound on both the boundary size of x0

and the sum of boundary sizes of x1, . . . , xp.

Lemma 5.9.3. For j = 0, 1, . . . , p, the weight of xj is at most 1/2.

Proof. Since K0 has weight greater than 1/2, the weight not in K0 is less than
1/2. The weight of x0 corresponds to vertices not in K0, so is less than 1/2.
Similarly, for any level-i− BFS component Kj that is not a descendant of K0,
Kj is disjoint from K0 so its weight is less than 1/2. On the other hand, if Kj

is a proper descendant of K0 then its weight is at most 1/2.

Every vertex except x1, . . . , xp is within i+ − 1 − i− hops of a neighbor of
x0, as shown by this diagram:

vertex level i--1
edge level i-
vertex level i-

vertex level i+-1
edge level i+
vertex level i+

i+ - i- - 1 hops

Let H = dual(H∗). Note that H can be obtained from G by edge deletions.
Note also that x0, . . . , xp are faces in H. The boundaries of these faces are
simple cycles.

Lemma 5.9.4. Any vertex v in H is within at most
√
2m/2 hops of a vertex

on the boundary of x0.

Proof. Suppose vertices f1, f2, . . . , fq of H∗ form a path, and each fi has bound-
ary size at most three. Let e1 be an edge of f1 and let eq be an edge of fq. A
simple induction shows that H contains a path of size at most �q/2� from an
endpoint of e1 to an endpoint of eq.

Now let v be any vertex in H, and let e be any incident edge. Since the sets
{δ∗(xi) : i = 1, . . . , p} are disjoint by Lemma 5.8.3, H has some face f other
than x1, . . . , xp that has v on its boundary. By Lemma 5.9.2, H∗ has a path of
size at most

√
2m from f to a neighbor of x0, so H has a path of size at most

√
2m/2 from v to a vertex on the boundary of x0.

The algorithm will next construct a spanning tree T of H. As in the proof
of the Planar Separator Theorem, we want to ensure that every path in T is
small so that every fundamental cycle is small. We would choose to make it a
breadth-first-search tree except that we want it to have a special property: each
of the cycles of H that form the boundaries of x0, . . . , xp should consist almost
entirely of tree edges. More here.

62 CHAPTER 5. SEPARATORS IN PLANAR GRAPHS

Let H � be the graph obtained from H by contracting all but one edge in the
boundary of xi, for i = 0, 1, . . . , p. Let T � be a breadth-first-search tree of H �

rooted at the vertex resulting from contracting edges in the boundary of x0. By
Lemma 5.9.4, the depth of T � is at most

√
2m/2. Therefore every path in T �

has size at most
√
2m.

Next the algorithm assigns

T := T �
∪ {edges contracted to form H from H �

}

so T is a spanning tree of G. Since at most 2
�
m/2− 2 edges were contracted,

every path in T has size at most
√
2m + 2

�
m/2 − 2 =

√
8m − 2, so every

fundamental cycle has size at most
√
8m.

5.9.4 The cycle separator

The algorithm has ensured that every face has weight at most 3/4. If any face
of G has weight greater than 1/4 then the boundary of such a face is a balanced
cycle separator. Assume therefore that every face has weight at most 1/4. The
algorithm applies Lemma 5.3.1, which states the existence of a fundamental-
cycle separator. The lemma requires that the boundary of every face have at
most three nontree edges. Every face of H that is also a face of G has at most
three boundary edges; and the boundary of each of the new faces (x0, . . . , xp)
has at most one nontree edge. ThereforeH has a fundamental cycle with respect
to T that is a 3

4 -balanced separator of face-weight. This cycle in H is also a
cycle in G, and the way face weights were assigned in H is also 3

4 -balanced.
This completes the proof of the Planar-Cycle-Separator Theorem.

5.10 Division into regions
5

For constants c1, c2, an r-division of an m-edge graph G is a decomposition
of G into at most c1m/r edge-disjoint subgraphs G1, . . . , Gk, each consisting of
at most r edges, such that |∂G(Gi)| ≤ c2

√
r. The subgraphs are called regions.

For each region Gi, the vertices of ∂G(Gi) are called the boundary vertices of
region Gi, and ∂G(Gi) is called the boundary.

We show in this section that an r-division can be found by using calls to a
procedure for finding an O(

√
n)-vertex separator.

Theorem 5.10.1. There is an O(n log n) algorithm that, given a planar em-
bedded graph G and a positive integer r, computes an r-division.

5.10.1 Concave function

In our analysis, we use concave functions, which we define in terms of weighted
averages. Any number 0 ≤ µ ≤ 1 defines a weighted average of a pair x, y of

5.10. DIVISION INTO REGIONS 63

numbers: µx + (1 − µ)y. A continuous function f(·) defined on an interval is
concave if, for every number 0 ≤ µ ≤ 1,

f(µx+ (1− µ)y) ≥ µf(x) + (1− µ)f(y) (5.1)

That is, the weighted average of the images of x and y under f is at most the
image under f of the weighted average of x and y.

Fact 5.10.2. If the second derivative of a function is nonpositive over some
interval then the function is concave over that interval.

For example, a little calculus shows that log x and
√
x are monotone nonde-

creasing and concave.

5.10.2 Phase One: Finding regions with on-average small
boundaries

The r-division algorithm consists of two phases. In Phase One, the algorithm
finds a decomposition of G into O(|E(G)|/r) regions such that the average num-
ber of boundary vertices per region is O(

√
r). Phase One consists of processing

the input graph using the procedure RecursiveDivide:

def RecursiveDivide(G, r):
if |E(G)| ≤ r then return {G}

else
assign equal weight to all edges of G
find a vertex separator and let G1, G2 be the pieces
return RecursiveDivide(G1, r) ∪RecursiveDivide(G2, r)

Lemma 5.10.3. After Phase One, the number of regions is at most 2|E(G)|/r.

Proof. Each final region is one of the two pieces obtained by applying a planar
separator to a region with more than r edges.

For each vertex v, let b(v) be one less than the number of regions containing
v.

Lemma 5.10.4. After RecursiveDivide is applied to an m-edge graph G,�
v∈V (G) b(v) ≤

4m√
r
.

Proof. Let B(m) be the maximum of
�

v∈V (G) b(v) over all m-edge graphs. The
Planar-Separator Theorem applied to an m-edge graph G guarantees that the
fraction of edges in each of piece lies in the interval [13 ,

2
3], and that the separator

has size at most 4
√
m. Therefore B(·) satisfies the recurrence

B(m) = 0 for m ≤ r

B(m) ≤ 4
√
m+ max

1/3≤α≤2/3
B(αm) +B((1− α)m) for m > r

64 CHAPTER 5. SEPARATORS IN PLANAR GRAPHS

For a constant c to be determined, we show by induction thatB(m) ≤ 4m√
r
−c

√
m.

To do this, we show that, for any α in the range [1/3, 2/3],

4
√
m+B(αm) +B((1− α)m) ≤

4m
√
r
− c

√
m.

By the inductive hypothesis,

B(αm) ≤
4αm
√
r

− c
√
αm

B((1− α)m) ≤
4(1− α)m

√
r

− c
�
(1− α)m

so

4
√
m+B(αm) +B((1− α)m) (5.2)

≤ 4
√
m+

4αm
√
r

− c
√
αm+

4(1− α)m
√
r

− c
�
(1− α)m

= 4
√
m+

4m
√
r
− c

√
m

�√
α+

√
1− α

�
(5.3)

In order to select a value of c for which the induction step can be completed,
we must show that

√
α +

√
1− α > 1. Let f(x) =

√
x +

√
1− x. Taking the

second derivative shows that f(x) is a concave function for 0 < x < 1. For any
1
3 ≤ α ≤

2
3 , we can write

α = µ
1

3
+ (1− µ)

2

3

and solve for µ. Since the resulting value of µ is between 0 and 1, we can apply
Inequality 5.1 to obtain

f(α) ≥ µf(1/3) + (1− µ)f(2/3)

Since a weighted average of two numbers is at least the minimum,

µf(1/3) + (1− µ)f(2/3) ≥ min{f(1/3), f(2/3)}

Since f(1/3) = f(2/3) = 1.39..., we have shown
√
α +

√
1− α ≥ 1.39.... We

set c = 4/0.39, for then c
√
m(

√
α+

√
1− α)− 4

√
m ≥ c

√
m, which shows that

the right-hand side of Inequality 5.3 is bounded by 4m√
r
− c

√
m, completing the

induction step.

5.10.3 Phase Two: Splitting small regions into small re-
gions with small boundaries

The result of Phase One is a decomposition of the input graph G into at most
2|E(G)/r regions of size at most r. Lemma 5.10.4 shows that the regions have
small boundaries on average but Phase Two is responsible for ensuring that

5.10. DIVISION INTO REGIONS 65

each region has a small boundary. Phase Two resembles Phase One; the dif-
ference is that weight is assigned to boundary vertices instead of to all edges.
Phase Two is as follows: for each region G resulting from Phase One, call Split
on G and B where B is the set of vertices of G that also appear in other regions.

def Splitr(G,B):
if |B| ≤ 16

√
r then return {G}

else
assign equal weight to all vertices in B (others are assigned zero weight)
find a vertex separator S and let G1, G2 be the pieces
return Splitr(G1, (B ∪ S) ∩ V (G1)) ∪ Splitr(G2, (B ∪ S) ∩ V (G2))

Lemma 5.10.5. A call Splitr(G,B) creates at most max{0, |B|
8
√
r
− 1} new

regions.

Proof. Let R(k) be the maximum number of new regions created upon invoking
Splitr(G,B) where |B| = k. We show by induction that R(k) ≤ max{0, k

8
√
r
−

1}.
For the base case, if |B| ≤ 16

√
r then no additional regions are created.

Assume therefore that |B| > 16
√
r. In this case there are two recursive calls,

Splitr(G1, B1) and Splitr(G2, B2) where Bi = (B ∪ S) ∩ V (Gi).
We write |B∩V (G1)| = α|B| and |B∩V (G2)| = (1−α)|B|. The separator’s

size guarantee ensures that |S| ≤ 4
√
r. Hence |B1| ≤ α|B| + 4

√
r and |B2| ≤

(1 − α)|B| + 4
√
r. The separator’s balance condition ensures that 1

3 ≤ α ≤
2
3 .

This combined with the fact that |B| > 16
√
r implies that |Bi| < |B| for i = 1, 2.

Hence, by the inductive hypothesis, the number of new regions created by
the call Splitr(G1, B1) is at most max{0, |B1|

8
√
r
− 1}, which is in turn at most

α|B|+4
√
r

8
√
r

− 1. Similarly, the number created by the call Splitr(G2, B2) is at

most (1−α)|B|+4
√
r

8
√
r

− 1. Since the call Splitr(G,B) directly created one new

region, the total number of new regions created is at most

1 +
α|B|+ 4

√
r

8
√
r

− 1 +
(1− α)|B|+ 4

√
r

8
√
r

− 1

which is at most |B|
8
√
r
− 1, proving the induction step.

Suppose Phase One and Phase Two are executed on a graph with m edges.
After Phase One, the sum over all regions R of the number of vertices in R that
also appear in other regions is at most

�
v 2b(v). By Lemma 5.10.4, this sum is

at most 8m√
r
. By Lemma 5.10.4, the number of new regions introduced by Phase

Two is therefore at most m
r . By Lemma 5.10.3, the number of regions resulting

from Phase One is at most 2m/r. Hence the total number of regions after
Phase One and Phase Two is at most 3m/r. Since Phase Two ensures that

66 CHAPTER 5. SEPARATORS IN PLANAR GRAPHS

each region has at most 16
√
r boundary vertices, the resulting set of regions

form an r-division.
Now we consider the running time. Traditional analysis of Phase One, using

the fact that finding a separator in an m-edge graph, shows that it runs in
O(m logm) time. The analysis of Lemma 5.10.5 shows that calling Splitr(G,B)

results in at most max{0, |B|
8
√
r
−1} calls to the vertex-separator algorithm; as in

the analysis of new regions, by Lemma 5.10.4 the total number of such calls for
all of Phase Two is at most m

r . Each call is on a graph consisting of at most r
edges, so the total time for Phase Two is O(m). We have proved Theorem 5.10.1.

5.11 Recursive divisions

Let r̄ = (r0, r1, . . .) be an increasing sequence of positive integers. We say the
height of a graph G with respect to r̄ is the smallest integer i such that the
graph has at most ri arcs. For a fixed sequence r̄, we denote the height of G by
height(G).

A recursive r̄-division of a nonempty graph G is a rooted tree whose vertices
are subgraphs of G, defined inductively as follows. The root of the tree is the
graph G. If G has one arc, the root has no children. Otherwise, the children
of the root are the regions G1, . . . , Gk forming an rheight(G)−1-division of G.
Moreover, each child is the root of a recursive r̄-division. The parent of a region
R is denoted by parent(R). The region consisting of a single arc uv is denoted
R(uv). Such a region is said to be atomic.

5.12 History

Lipton and Tarjan [Lipton and Tarjan, 1979] proved the first separator theo-
rem for planar graphs. Constant-factor Improvements were found by Djid-
jev [Djidjev, 1981] and Gazit [Gazit, 1986]. Goodrich [Goodrich, 1995] gave
a linear-time algorithm to find a recursive decomposition using planar separa-
tors. Miller [Miller, 1986] proved the first cycle-separator theorem for planar
graphs. A constant-factor improvement was found by Djidjev and Venkate-
san [Djidjev and Venkatesan, 1997]. The notion of an r-division is due to Fred-
erickson [Frederickson, 1987], who gave the algorithm for finding one.

Chapter 6

Shortest paths with
nonnegative lengths

In this chapter, we give a linear-time algorithm for computing single-source
shortest paths in a planar graph with nonnegative lengths. The algorithm uses
recursive divisions (discussed in Section 5.10). We start with some basic con-
cepts about shortest paths in arbitrary graphs.

6.1 Shortest-path basics: path-length property
and relaxed and tense darts

Let G be a directed graph with dart-lengths given by a dart-vector c. We say a
vertex vector d has the path-length property with respect to c if, for each vertex
v, d[v] is the length (with respect to c of some s-to-v path (not necessarily the
shortest).

We say a dart vw is relaxed with respect c and the vertex vector d if d[w] ≤
d[v] + length(vw). An unrelaxed dart is said to be tense.

Let s be a vertex. If d[s] = 0 and d satisfies the path-length property and
every arc is relaxed then, for each vertex v, d[v] is the length of the shortest
s-to-v path.

A basic step in several shortest-path algorithms is called relaxing a dart.
Suppose d is a vertex vector with the path-length property and dart vw is
tense. Relaxing vw consists of executing

d[w] := length(vw) + d[v]

after which vw is relaxed and d still has the path-length property.
For the case of nonnegative lengths, Dijkstra’s algorithm [?] generates an

ordering of darts to relax so that each dart is relaxed at most once, after which
all dart are relaxed. If the algorithm uses a priority queue as suggested by

67

68 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

Johnson [?], the running time is O(m log n) where m is the number of arcs (we
assume m ≥ n− 1 since otherwise the graph is disconnected).

6.2 Using a division in computing shortest-path
distances

The shortest-path algorithm operates on a graph equipped with a recursive divi-
sion. The algorithm runs quickly because most queue operations are performed
on smaller queues.

The algorithm has a limited “attention span.” It chooses a region, then
performs a number of steps of Dijkstra’s algorithm (the number depends on
the height of the region), then abandons that region until later. Thus it skips
around between the regions.

To provide intuition, we briefly describe a simplified version of the algo-
rithm. The simplified version runs in O(n log log n) time. Divide the graph into
O(n/ log4 n) regions of size O(log4 n) with boundaries of size O(log2 n). We
associate a status, active or inactive, with each edge. Initialize by deactivating
all edges and setting all node labels d[v] to infinity. Then set the label of the
source to 0, and activate its outgoing edges. Now repeat the following three
steps:

Step 1: Select the region containing the lowest-labeled node that has active
outgoing edges in the region.

Step 2: Repeat log n times:

Step 2A: Select the lowest-labeled node v in the current region that has active
outgoing edges in the region. Relax and deactivate all its outgoing
edges vw in that region. For each of the other endpoints w of these
edges, if relaxing the edge vw resulted in decreasing the label of w,
then activate the outgoing edges of w.

Note that applying Dijkstra’s algorithm to the region would entail repeating
Step 2A as many times as there are nodes in the region. Every node would be
selected exactly once. We cannot afford that many executions of Step 2A, since
a single region is likely to be selected more than once in Step 1. In contrast to
Dijkstra’s algorithm, when a node is selected in Step 2A, its current label may
not be the correct shortest-path distance to that node; its label may later be
decreased, and it may be selected again. Since the work done within a region
during a single execution of Step 2 is speculative, we don’t want to do too much
work. On the other hand, we don’t want to execute Step 1 too many times. In
the analysis of this algorithm, we show how to “charge” an execution of Step 1
to the log n iterations of Step 2A.

There is an additional detail. It may be that Step 2A cannot be repeated
log n iterations because after fewer than log n times there are no active outgoing
edges left in the region. In this case, we say the execution of Step 2 is truncated.

6.2. USING ADIVISION IN COMPUTING SHORTEST-PATHDISTANCES69

Since we cannot charge a truncated execution of Step 2 to log n iterations of
Step 2A, we need another way to bound the number of such executions. It turns
out that handling this “detail” is in fact the crux of the analysis. One might
think that after a region R underwent one such truncated execution, since all
its edges were inactive, the same region would never again be selected in Step 1.
However, relax-steps on edges in another region R� might decrease the label on a
node w on the boundary between R and R�, which would result in w’s outgoing
edges being activated. If w happens to have outgoing edges within R, since
these edges become active, R will at some later point be selected once again in
Step 1.

This problem points the way to its solution. If R “wakes up” again in
this way, we can charge the subsequent truncated execution involving R to the
operation of updating the label on the boundary node w. The analysis makes use
of the fact that there are relatively few boundary nodes to bound the truncated
executions. Indeed, this is where we use the fact that the regions have small
boundaries.

6.2.1 The algorithm

We assume without loss of generality that the input graph G is directed, that
each node has at most two incoming and two outgoing edges, and that there is
a finite-length path from s to each node. We assume that the graph is equipped
with a recursive division.

The algorithm maintains a vertex vector d with the path-length property.
For each region R of the recursive division of G, the algorithm maintains

a priority queue Q(R). If R is nonatomic, the items stored in Q(R) are the
immediate subregions of R. For an atomic region R(uv), Q(R(uv)) consists
of only one item, the single arc uv contained in R(uv); in this case, the key
associated with the arc is either infinity or the label d[u] of the tail of the arc.

The algorithm is intended to ensure that for any region R, the minimum
key in the queue Q(R) is the minimum distance label d[v] over all arcs vw in R
that need to be processed. We make this precise in Lemma 6.3.3. This idea of
maintaining priority queues for nested sets is not new, and has been used, e.g.
in finding the kth smallest element in a heap [. Frederickson min-heap .]. Fix reference

We assume the priority queue data structure supports the operations

• minItem(Q), which returns the item in Q with the minimum key,

• minKey(Q), which returns the key associated with minItem(Q)

• updateKey(Q, x, k), which updates the key of x to k (x must be an item of
Q) and returns a boolean indicating whether the update causedminKey(Q)
to decrease.

We indicate an item is inactive by setting its key to infinity. Items go from
inactive to active and back many times during the algorithm. We never delete
items from the queue. This convention is conceptually convenient because it

70 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

avoids the issue of having to decide, for a given newly active item, into which
of the many priority queues it should be re-inserted.SUMMARY, DEFINITION

OF TRUNCATED—SEE
BEGINNING OF SECTION
6.4 (ANALYSIS OF PRO-
CESS, NOT INCLUDING
UPDATE) FOR SOME
INTUITION THAT CAN
BE BORROWED FOR
THIS PART.

The algorithm uses parameters αi to specify an “attention span” for each
level of the recursive division. We will specify their values in Section 6.5. The
algorithm consists of the following two procedures.

def Process(R)
pre: R is a region.

1 if R contains a single edge uv,
2 if d[v] > d[u] + length(uv),
3 d[v] := d[u] + length(uv)
4 for each outgoing edge vw of v, call Update(R(vw), vw,d[v]).
5 updateKey(Q(R), uv,∞).
6 else (R is nonatomic)
7 repeat αheight(R) times or until minKey(Q(R)) is infinity:
8 R� := minItem(Q(R))
9 Process(R�)
10 updateKey(Q(R), R�,minKey(Q(R�))).

def Update(R, x, k)
: pre: R is a region, x is an item of Q(R), and k is a key value.

1 updateKey(Q(R), x, k)
2 if the updateKey operation reduced the value of minKey(Q(R)) then
3 Update(parent(R), R, k).

To compute shortest paths from a source s, proceed as follows. Initial-
ize all vertex-labels and keys to infinity. Then assign the label d[s] := 0,
and for each outgoing arc sv, call Update(R(sv), sv, 0). Then repeatedly call
Process(RG), where RG is the region consisting of all of G, until the call results
in minKey(Q(RG)) being infinity. Since the vertex-labels d are only updated
by steps in which arcs are relaxed, the vertex-labels satisfy the path-length
property throughout the algorithm’s execution. In the next section, we show
that, when the algorithm terminates, all arcs are relaxed. It follows that the
vertex-labels give distances from s.

We define an entry vertex of a region R as follows. The only entry vertex of
the region RG is s itself. For any other region R, v is an entry vertex if v is a
boundary vertex of R such that some arc vw belongs to R.

When the algorithm processes a region R, it finds shorter paths to some of
the vertices of R and so reduces their labels. Suppose one such vertex v is a
boundary vertex of R. The result is that the shorter path to v can lead to shorter
paths to arcs in a neighboring region R� for which v is an entry vertex. In order
to preserve the property that the minimum key of Q(R�) reflects the labels of
vertices of R�, therefore, the algorithm might need to update Q(R�). Updating

6.3. CORRECTNESS 71

priority queues of neighboring regions is handled by the Update proedure. The
reduction of minKey(Q(R�)) (which can only occur as a result of the reduction
of the label of an entry vertex v) is a highly significant event for the analysis.
We refer to such an event as a foreign intrusion of region R� via entry vertex v.

Lemma 6.2.1. Let R be a region. Suppose there are two foreign intrusions of
R via v, one at time t1 and one at time t2, where t1 < t2. Then minKey(Q(R))
is greater at time t1 than at time t2.

Proof. d[v] must get smaller for the second intrusion to count.

6.3 Correctness

We say that an arc uv is active if the key of uv in Q(R(uv)) is finite. To prove
that every arc is relaxed at termination, we show that (a) if an arc is inactive,
then it is relaxed, and (b) at termination all arcs are inactive.

Lemma 6.3.1. If an arc uv is inactive then it is relaxed (except during Line 4).

Proof. The lemma holds just before the first call to Process since at that point
every node but s has label infinity, and every outgoing arc of s is active. The
algorithm only deactivates an arc uv, i.e., uv is assigned a key of ∞ in Line 5,
just after the arc is relaxed.

An arc vw could become tense when the labels of its endpoints change. Note
that labels never go up. The label of v might go down in Line 4, but in the
same step the algorithm calls Update(R(vw), vw,d[v]) for each outgoing arc
vw of v. In Line 1 of Update, the key of vw is updated to a finite value, so vw
is again active.

Lemma 6.3.2. The key of an active arc vw is d[v] (except during Line 4).

Proof. Initially all labels and keys are ∞. Whenever a label d[v] is assigned a
value k (either in the initialization, where v = s, or in Line 4), Update(R(vw), vw, k)
is called for each outgoing arc vw. The first step of Update(R, v, k) is to update
the key of vw to k.

Next we show that the queues are, in a sense, consistent. The region of an
invocation A of Process is simply the region that was the argument to that
invocation of Process. The most recent invocation of Process that has not
yet returned is called the current invocation, and that invocation’s region is
called the current region.

Lemma 6.3.3. For any region R that is not an ancestor of the current region,
the key associated with R in Q(parent(R)) is the min key of Q(R).

Proof. At the very beginning of the algorithm, all keys are infinity. Thus in
this case the lemma holds trivially. Every time the minimum key of some queue
Q(R) is changed in Line 1 of Update, a recursive call to Update in Line 2
ensures that the key associated with R in Q(parent(R)) is updated.

72 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

We must also consider the moment when a new region becomes the current
region. This happens upon invocation of the procedure Process, and upon
return from Process.

• When Process(R) is newly invoked, the new current region R is a child
of the old current region, so Lemma 6.3.3 applies to even fewer regions
than before; hence we know it continues to hold.

• When Process(R�) returns in step 9, the parent R of R� becomes current.
Hence at that point Lemma 6.3.3 applies to R�. Note, however, that
immediately after the call to Process(R�), the calling invocation updates
the key of R� in Q(R) to the value minKey(Q(R�)).

Corollary 6.3.4. For any region R that is not an ancestor of the current region,

minKey(Q(R)) = min{d[v] : vw is an active arc contained in R} (6.1)

Proof. By induction on the height of R, using Lemma 6.3.3.

The algorithm terminates when Q(RG) becomes infinite. At this point,
according to Corollary 6.3.4, G contains no active arc, so, by Lemma 6.3.1, all
arcs are relaxed. Since the vertex-labels satisfy the path-length property, it
follows that they are shortest-path distances. We have proved the algorithm is
correct.

6.4 The Dijkstra-like property of the algorithm

Because of the recursive structure of Process, each initial invocation Process(RG)
is the root of a tree of invocations of Process and Update, each with an as-
sociated region R. Parents, children, ancestors, and descendants of invocations
are defined in the usual way.

In this section, we give a lemma that is useful in the running-time analysis.
This lemma is a consequence of the nonnegativity of the lengths; it is analogous
to the fact that in Dijkstra’s algorithm the labels are assigned in nondecreasing
order.

For an invocation A of Process on region R, we define start(A) and end(A)
to be the values of minKey(Q(R)) just before the invocation starts and just
after the invocation ends, respectively.

Lemma 6.4.1. For any invocation A, and for the children A1, . . . , Ap of A,

start(A) ≤ start(A1) ≤ start(A2) ≤ · · · ≤ start(Ap) ≤ end(A). (6.2)

Moreover, every key assigned during A is at least start(A).

6.5. ACCOUNTING FOR COSTS 73

Proof. The proof is by induction on the height of A. If A’s height is 0 then it
has an atomic region R(uv). In this case the start key is the value of d[u] at
the beginning of the invocation. The end key is infinity. The only finite key
assigned (inUpdate) is d[u]+length(uv), which is at least d[u] by nonnegativity
of edge-lengths. There are no children.

Suppose A’s height is more than 0. In this case it invokes a series A1, . . . , Ap

of children. Let R be the region of A. For i = 1, . . . , p, let ki be the value of
minKey(Q(R)) at the time Ai is invoked, and let kp+1 be its value at the end of
Ap. Line 8 of the algorithm ensures ki = start(Ai) for i ≤ p. By the inductive
hypothesis, every key assigned by Ai is at least start(Ai), so ki+1 ≥ ki. Putting
these inequalities together, we obtain

k1 ≤ k2 ≤ · · · ≤ kp+1

Note that k1 = start(A) and kp+1 = end(A). Thus (6.2) holds and every key
assigned during A is at least start(A).

6.5 Accounting for costs

Now we begin the running-time analysis. The time required is dominated by
the time for priority-queue operations. Lines 8 and 10 of Process involve
operations on the priority queue Q(R). We charge a total cost of log |Q(R)| for
these two steps. Similarly, we charge a cost of log |Q(R)| for Line 3 of Update.
Line 5 performs an operation on a priority queue of size one, so we only charge
one for that operation. Our goal is to show that the total cost is linear.

To help in the analysis, we give versions of the procedures Update and
Process that have been modified to keep track of the costs and to keep track
of foreign intrusions. Note that the modifications are purely an expository
device for the purpose of analysis; the modified procedures are not intended to
be actually executed, and in fact one step of the modified version of Process
cannot be executed since it requires knowledge of the future!

Amounts of cost are passed around by Update and Process via return
values and arguments. We think of these amounts as debt obligations. These
debt obligations travel up and down the forest of invocations, and are eventually
charged by invocations of Process to pairs (R, v) where R is a region and v is
an entry vertex of R.

The modified version of Update, given below, handles cost in a simple way:
each invocation returns the total cost incurred by it and its proper descendants
(in Line 3 if there are proper descendants and in Line 3a if not).

The modified Update has another job to do as well: it must keep track of
foreign intrusions. There is a table entry[·] indexed by regions R. Whenever the
reduction of the vertex-label d[v] causes minKey(Q(R)) to decrease, entry[R] is
set to v in step 2a. Initially the entries in the table are undefined. However, for
any region R, the only way that minKey(Q(R)) can become finite is by an in-
trusion. We are therefore guaranteed that, at any time at which minKey(Q(R))
is finite, entry[R] is an entry vertex of R.

74 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

def Update(R, x, k, v)
pre: R is a region, x is an item of Q(R), k is a key value,

and v is a boundary vertex of R.
1 updateKey(Q(R), x, k, v)
2 if the updateKey operation reduced the value of minKey(Q(R)) then
2a entry[R] := v
3 return log |Q(R)|+Update(parent(R), R, k, v).
3a else return log |Q(R)|

The cost of the invocationUpdate(R, x, k, v) is log |Q(R)| because of the updateKey
operation in step 1.

We now turn to the modified Process procedure. An invocation takes an
additional argument, debt, which is a portion of the cost incurred by ancestor
invocations. We refer to this amount as the debt inherited by the invocation.

Let R be the invocation’s region. If R is atomic, the invocation’s debt is
increased by the cost incurred by calls to Update, and then by 1 to account
for the updateKey operation on the single-element priority queue.

If R is not atomic, the invocation will have some children, so can pass some
of its debt down to its children. Since the parent invocation expects to have
αheight(R) children, it passes on to each child

• a 1/αheight(R) fraction of the parent’s inherited debt, plus

• the log |Q(R)| cost the parent incurred in selecting the child’s region from
the priority queue.

The parent uses a variable credit to keep track of the amount of its inherited
debt that it has successfully passed down to its children. If the parent has
αheight(R) children, the parent’s total credit equals its inherited debt. If not, we
say the parent invocation is truncated.

Lemma 6.5.1. A nontruncated invocation sends to its children all the debt it
inherits or incurs.

Debts also move up the tree. The parent invocation receives some debt from
each child. The parent adds together

• the debt received from its children (upDebt) and

• the amount of inherited debt for which it has not received a credit (zero
unless the parent is truncated)

to get the total amount the parent owes. The parent then either passes that
aggregate debt to its parent or pays off the debt itself by withdrawing from
an account, the account associated with the pair (R, v) where v is the value of
entry[R] at the time of the invocation (step 10d).

Because of Lemma 6.5.1, as debt moves up the tree, no new debt is added
by nontruncated invocations of Process.Clarify what “new” debt

means?

6.5. ACCOUNTING FOR COSTS 75

def Process(R, debt)
pre: R is a region.

1 if R contains a single edge uv,
2 if d[v] > d[u] + length(uv),
3 d[v] := d[u] + length(uv)
4 for each outgoing edge vw of v, debt+ = Update(R(vw), vw,d[v], v).
5 updateKey(Q(R), uv,∞).
5a debt+ = 1
6 else (R is nonatomic)
6a upDebt:= 0, credit:=0
7 repeat αheight(R) times or until minKey(Q(R)) is infinity:
8 R� := minItem(Q(R))
8a credit+ = debt/αheight(R)

9 upDebt+ = Process(R�, debt/αheight(R) + log |Q(R)|)
10 updateKey(Q(R), R�,minKey(Q(R�))).
10a debt+ = upDebt− credit
10b if minKey(Q(R)) will decrease in the future,
10b return debt
10c else (this invocation is stable)
10d pay off debt by withdrawing from account of (R, entry[R])
10e return 0

We say an invocation A of Process is stable if, for every invocation B > A,
the start key of B is at least the start key of A. If an invocation is stable, it pays
off the debt by withdrawing the necessary amount from the account associated
with (R, entry[R]). If not, it passes the debt up to its parent. The following
theorem is proved in Section 6.6

Theorem 6.5.2 (Payoff Theorem). For each region R and entry vertex v of R,
the account (R, v) is used to pay off a positive amount at most once.

Any invocation whose region is the whole graph is stable because there are
no foreign intrusions of that region. Therefore such an invocation never tries to
pass any debt to its nonexistent parent. We are therefore guaranteed that all
costs incurred by the algorithm are eventually charged to accounts.

The total computational cost depends on the parameters r̄ = (r0, r1, r2, . . .)
of the recursive r̄-division and on the parameters α0, α1, . . . that govern the
number of iterations per invocation of Process. For now, we define the latter
parameters in terms of the former parameters; later we define the former. Define
αi =

4 log ri+1

3 log ri
.

Lemma 6.5.3. Each invocation at height i inherits at most 4 log ri+1 debt.

Proof. By reverse induction on i. Each top-level invocation inherits no debt.
Suppose the lemma holds for i, and consider a height-i invocation. By the
inductive hypothesis, it inherits at most 4 log ri+1 debt, so it passes down to

76 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

each child a debt of at most 4 log ri+1

αi
+ log ri. The choice of αi ensures that this

is 4 log ri.

Define βij = αiαi−1 . . . αj+1 for i > j. βii is defined to be 1, and for i < j,
we define βij to be zero.)

Lemma 6.5.4. A Process invocation of height i has at most βij descendant
Process invocations of height j.

Debt incurred by the algorithm by a step of Process is called process debt.

Lemma 6.5.5. For each height-i region R and boundary vertex x of R, the
amount of process debt payed off by the account (R, x) is at most

�
j≤i βij4 log rj+1.

Proof. By the Payoff Theorem, this account is used at most once. Let A be
the invocation of Process that withdraws the payoff from that account. Each
dollar of process debt paid off by A was sent back to A from some descendant
invocation who inherited or incurred that dollar of debt. Thus, to account for the
total amount of process debt paid off by A, we consider each of its descendant
invocations. By Lemma 6.5.4, A has βij descendants of height j, and each
such descendant inherited or incurred a debt of at most 4 log rj+1 dollars, by
Lemma 6.5.3.

Cost incurred by the algorithm by a step of Update is called update debt.
The event (in Line 3 of Process) of reducing a vertex v’s label d[v] initiates a
chain of calls to Update in Line 4 for each outgoing arc vw. We say the debt
incurred is on behalf of v.

Lemma 6.5.6. If Update is called on the parent of region R during an invo-
cation A of Process then R is not the region of A.

Proof. LetRA be the region ofA. Recall that start(A) is the value ofminKey(Q(RA))
just before A begins. By Lemma 6.4.1, every key assigned during A is at least
start(A).

Consider a chain of Update calls initiated by the reduction of the label of
vertex v. By the condition in Line 2 of Process and the condition in Line 2 of
Update, in order for Update to be called on the parent of R, that label must
have been less than the value of minKey(Q(R)). This shows R �= RA.

For a vertex v, define

height(v) = max{j : v is a boundary vertex of a height-j region}

Corollary 6.5.7. A chain of calls to Update initiated by the reduction of the
label of v has total cost at most

�
k≤height(v)+1 log rk.

Proof. Let A0 be the invocation of Process during which the initial call to Up-
date was made, and let R(uv) be the (atomic) region of A0. Consider the chain
of calls to Update, and let

R(vw)=R0, R1, . . . , Rp

6.6. THE PAYOFF THEOREM 77

be the corresponding regions. Note that height(Rj) = j. The cost of call j is
log |Q(Rj)|, which is at most log rj . SinceRp−1 contains vw but (by Lemma 6.5.6)
does not contain uv, v is a boundary vertex of Rp−1, so p ≤ height(v) + 1.

6.6 The Payoff Theorem

In this section, we prove the Payoff Theorem, repeated here for convenience:

Payoff Theorem (Theorem 6.5.2): For each region R and entry
vertex v of R, the account (R, v) is used to pay off a positive amount
at most once.

In this section, when we speak of an invocation, we mean an invocation of
Process. We define the partial order ≤ on the set of invocations of Process
as follows: A ≤ B if A and B have the same region, and A occurs no later than
B. We say in this case that A is a predecessor of B. We write A < B if A ≤ B
and A �= B.

As we remarked earlier, the only way minKey(Q(R)) can decrease is if there
is a foreign intrusion into R. We restate this as follows.

Lemma 6.6.1. Let B be an invocation with region R. Suppose that between time
t and the time B starts, there are no foreign intrusions of R. Then start(B) is
at least the value of minKey(Q(R)) at time t.

Lemma 6.6.2. Suppose A < B are two invocations such that no foreign intru-
sion occurs between A and B and such that B is stable. Then every child of A
is stable.

Proof. Let A� be a child of A, and let C � be any invocation such that A� < C �.
If we can prove

start(A�) ≤ start(C �) (6.3)

then it will follow that A� is stable. Let C be the parent invocation of C � (so
the region of C � is R). If C = A, then (6.3) follows from Lemma 6.4.1.

Assume therefore that C > A. It follows from Lemma 6.4.1 that start(A�) ≤
end(A) and that start(C) ≤ start(C �), so it suffices to show end(A) ≤ start(C).
There are two cases.

• Case 1: B ≤ C . In this case, end(A) ≤ start(C) by Lemma 6.6.1.

• Case 2: C > B. In this case, end(A) ≤ start(B) follows by Lemma 6.6.1,
and start(B) ≤ start(C) follows by the stability of B, so end(A) ≤

start(C).

Now we can prove the Payoff Theorem, which states that each pair (R, v) is
charged a positive amount at most once.

78 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

If (R, v) is never charged to, we are done. Otherwise, let A be the earliest
invocation that pays off a positive amount from the account (R, v) in step 10d.
Then R is the region of A, v is the value of entry[R] at the time of A, and A is
stable. Let t1 be the time when entry[R] was last set before A.

Assume for a contradiction that there is an invocation B such that A < B
and such that B also charges to (R, v). Then v is the value of entry[R] at the
time of B, and B is stable. Let t2 be the time when entry[R] was last set before
B. If t2 > t1 then, by Lemma 6.2.1, minKey(Q(R)) at time t2 was less than
that at time t1, which in turn was no more than start(A) by Lemma 6.2.1,
contradicting the stability of A.

We conclude that no foreign intrusion of R occurs between A and B. By
Lemma 6.6.2, therefore, every child of A is stable. It follows from step 10e that
every child of A returns a zero debt, so in invocation A the value of upDebt
is zero. Assume for a contradiction that A’s credit does not cover its own
inherited debt. Then A must be a truncated invocation, so end(A) = ∞. By
Lemma 6.6.1, start(B) = ∞, a contradiction. Therefore, A pays off zero, a
contradiction. This completes the proof of the Payoff Theorem.

6.7 Analysis

Let c1, c2 be the constants such that an r-division of an m-arc graph has at
most c1m/r regions, each having at most c2

√
r boundary vertices.

Lemma 6.7.1. Let m be the number of edges of the input graph. For any
nonnegative integer i, there are at most c1c2m/

√
m pairs (R, x) where R is a

height-i region and x is an entry vertex of R.

Combining this lemma with Lemma 6.5.5, we obtain

Corollary 6.7.2. The total process debt is at most

�

i

m
√
ri

�

j≤i

βij4 log rj+1 (6.4)

Lemma 6.7.3. Let i, j be nonnegative integers, and let R be a region of height
i. The total amount of update debt incurred on behalf of vertices of height at
most j and paid off from accounts {(R, x) : x an entry vertex of R} is at most

c2
√
riβi0

j+1�

k=0

log rk

Proof. The number of entry vertices x of R is at most c2
√
ri. For each, the Pay-

off Theorem ensures that all the debt paid off from account (R, x) comes from
descendants of a single invocation A of Process. The number of height-0 de-
scendants of A is βi0. For each such level-0 descendant A0, if the corresponding
update debt is on behalf of a vertex of height at most j then by Corollary 6.5.7
the cost is at most

�j+1
k=0 log rk.

6.8. PARAMETERS 79

Lemma 6.7.4. The total update debt is at most

�

i

c1c2
m

ri

√
riβi0

i+1�

k=0

log rk (6.5)

+
�

j

c1
m
√
rj
2
�

i<j

c2
√
riβi0

j+1�

k=0

log rk (6.6)

Proof. To each unit of update debt, we associate two integers: i is the height of
the region R such that the debt is paid off from an account (R, x), and j is the
height of the vertex v on whose behalf the debt was incurred. If i ≥ j, we refer
to the debt as type 1 debt, and if i < j, we refer to it as type 2 debt.

First we bound the type-1 debt. For each integer i, there are at most c1
m
ri

regions R of height i. By Lemma 6.7.3, the total type-1 debt is therefore

�

i

c1c2
m

ri

√
riβi0

i+1�

k=0

rk

Now we bound the type-2 debt. For each integer j, the number of regions of
height j is at most c1

m
rj

and each has at most c2
√
rj entry vertices, so the total

number of vertices of height j is at most c1c2
m√
rj
. For each such vertex v, there

are at most 2 incoming darts uv. Any height-0 invocation of Process that
reduced v’s label involved one of these two darts. For each such dart uv, for
each integer i < j, there is exactly one height-i region R that includes uv. By
Lemma 6.7.3, the total type-2 debt is therefore

�

j

c1
m
√
rj
2
�

i<j

c2
√
riβi0

j+1�

k=0

rk

6.8 Parameters

In this section, we show that there is a way to choose the parameters r0, r1, r2, . . .
so that the total process cost and the total update cost are O(m).

Problem 6.8.1. For r0 = 1, r1 = log4 m, and r2 = m, show that the total cost
is O(m log logm).

We define r0, r1, . . . inductively by r0 = 1 and rj+1 = 16r
1/6
j . This defines

an increasing sequence such that

log rj+1 = 4r1/6j (6.7)

so
log2 rj+1 = 16r1/3j (6.8)

80 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

Lemma 6.8.2. r1/6j ≥ 1.78j for j ≥ 7.

Proof. Define uj = log r1/6j . Then log rj+1 = 4 · 2uj and

uj+1 = log r1/6j+1 =
1

6
log rj+1 =

1

6
4 · 2uj =

2

3
2uj

A simple induction shows that uj ≥ .838j for j ≥ 7. Since r1/6j = 2uj , this
implies the lemma..

Lemma 6.8.3. The process-debt (6.4) is O(m).

Proof.

�

i

m
√
ri

�

j≤i

βij4 log rj+1

=
�

i

m
√
ri

�

j≤i

(4/3)i−j log ri+1

log rj+1
4 log rj+1 by definition of βij

= 4m
�

i

r−1/2
i

�

j≤i

(4/3)i−j log ri+1

≤ 4m
�

i

r−1/2
i c(4/3)i log ri+1 for a constant c

≤ 4cm
�

i

r−1/2
i (4/3)i4r1/6i

= 16cm
�

i

r−1/3
i (4/3)i

which is O(m) by Lemma 6.8.2.

Lemma 6.8.4. The update-debt is O(m).

Proof. First we show that
�

j r
−1/2
j (4/3)j log2 rj+1 is bounded by a constant c.

(The recurrence relation for rj was chosen to make this true.)

�

j

r−1/2
j (4/3)j log2 rj+1 ≤

�

i

r−1/2
j (4/3)j16r1/3j by (6.8)

=
�

i

r−1/6
j (4/3)j

=
�

i

1.78−j(4/3)j by Lemma 6.8.2

which is bounded by a constant c.
We also use the fact that

�i+1
k=0 log rk ≤ c� log ri+1 for a constant c�.

6.9. HISTORY 81

Next we bound the type-1 debt (6.5).

�

i

c1c2
m

ri

√
riβi0

i+1�

k=0

log rk

≤ c1c2m
�

i

r−1/2
i

√
riβi0c

� log ri+1

=
�

i

c1c2c
�mr−1/2

i

√
ri(4/3)

i log ri+1

log r1
log ri+1 by definition of βi0

=
c1c2c�m

log r1

�

i

1
√
ri
(4/3)i log2 ri+1

=
c1c2c�m

log r1
c

Now we bound the type-2 debt (6.6).

�

j

c1
m
√
rj
2
�

i<j

c2
√
riβi0

j+1�

k=0

log rk

≤

�

j

c1
m
√
rj
2
�

i<j

c2
√
riβi0 c� log rj+1

= 2c1c2c
�m

�

j

r−1/2
j log rj+1

�

i<j

√
ri (4/3)

i log ri+1

log r1
by definition of βi0

≤
2c1c2c�m

log r1

�

j

r−1/2
j log rj+1 c�� r1/2j−1(4/3)

j−1 log rj for a constant c��

≤
2c1c2c�c��m

log r1

�

j

r−1/2
j log rj+1 r1/2j−1r

1/6
j−1(4r

1/6
j−1) by (6.7) and Lemma 6.8.2

≤
8c1c2c�c��m

log r1

�

j

r−1/2
j log rj+1 rj−1

≤
8c1c2c�c��m

log r1

�

j

r−1/2
j log2 rj+1

≤
8c1c2c�c��m

log r1
c

Theorem 6.8.5. The shortest-path algorithm runs in O(m) time.

6.9 History

Frederickson [Frederickson, 1987] gave the first shortest-path algorithm for pla-
nar graphs that is faster than the one for general graphs. His algorithm runs in

82 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

O(n
√
log n) time. His algorithm used an r-division (a concept he pioneered) to

ensure that most priority-queue operations involved small queues.
Building on these ideas, Henzinger, Klein, Rao, and Subramanian [Henzinger et al., 1997]

gave the linear-time algorithm presented here.

Chapter 7

Multiple-source shortest
paths

7.1 Slack costs, relaxed and tense darts, and
consistent price vectors

7.1.1 Slack costs

Recall that, for a graphG, we use AG to denote the dart-vertex incidence matrix.
Let ρ be a vertex vector. The slack cost vector with respect to ρ is the vector

cρ = c+AGρ. That is, the slack cost of dart d with respect to ρ is

cρ[d] = c[d] + ρ[tail(d)]− ρ[head(d)]

In this context, we call ρ a price vector.
By a telescoping sum, we obtain

Lemma 7.1.1. For any path P , cρ(P) = c(P) + ρ[start(P)]− ρ[end(P)].

Corollary 7.1.2 (Slack costs preserve optimality). For fixed vertices s and t,
an s-to-t path is shortest with respect to cρ iff it is shortest with respect to c.

+2 -3
8 88

6 13 5

00

Figure 7.1: This figure shows how a price vector changes lengths of a path.
Assume for simplicity that the path’s start and end each have price zero. Then
the length of the path does not change, despite the changes in the lengths of
the darts.

83

84 CHAPTER 7. MULTIPLE-SOURCE SHORTEST PATHS

Corollary 7.1.2 is very useful because it alllows us to transform a shortest-
path instance with respect to one cost vector, c, into a shortest-path instance
with respect to another, cρ. This transformation is especially useful if the new
costs are nonnegative.

7.1.2 Relaxed and tense darts

Recall from Section 6.1 that a dart d is relaxed with respect to c and ρ if

ρ[tail(d)] + c[d]− ρ[head(d)] ≥ 0 (7.1)

and tense otherwise. Note that the quantity on the left-hand side is the slack
cost of d with respect to ρ. Thus a dart is relaxed if its slack cost is nonnegative
and tense if its slack cost is negative.

A dart d is tight if Inequality 7.1 holds with equality, i.e. if its slack cost is
zero.

7.1.3 Consistent price vectors

A price vector is consistent with respect to c if the slack costs of all darts are
nonnegative. That is, ρ is a consistent price vector if every dart is relaxed with
respect to ρ.

Following up on the discussion in Section 7.1.1, a consistent price vector al-
lows us to transform a shortest-path instance with respect to costs some of which
are negative into a shortest-path instance in which all costs are nonnegative.

Now we discuss a way to obtain a consistent price vector. For a vertex r, we
say that a price vector ρ is the from-r distance vector with respect to c if, for
every vertex v, ρ[v] is the minimum cost with respect to c of a r-to-v path of
darts.

Lemma 7.1.3. Suppose ρ is the from-r distance vector with respect to c for
some vertex r. Then ρ is a consistent price function, and every minimum-cost
path starting at r consists of darts that are tight with respect to ρ.

Problem 7.1.4. Prove Lemma 7.1.3.

A from-r distance vector is not just any consistent price function; it is max-
imum in a sense.

Lemma 7.1.5. Suppose ρ is the from-r distance vector with respect to c for
some vertex r. For each vertex v,

ρ[v] = max{γ[v] : γ is a consistent price function such that γ[r] = 0} (7.2)

Proof. Let T be an r-rooted shortest-path tree. The proof is by induction on the
number of darts in T [v]. The case v = r is trivial. For the induction step, let v
be a vertex other than r, and let d be the parent dart of v in T , i.e. head(d) = v.
Let u = tail(d). Let γ be the vertex vector attaining the maximum in 7.2.

7.1. SLACK COSTS, RELAXED AND TENSE DARTS, AND CONSISTENT PRICE VECTORS85

By the inductive hypothesis,

ρ[u] ≥ γ[u] (7.3)

Since γ is a consistent price function,

γ[v] ≤ γ[u] + c[d] (7.4)

By Lemma 7.1.3, ρ is itself a consistent price function, so γ[v] ≥ ρ[v], and d is
tight with respect to ρ, so

ρ[v] = ρ[u] + c[d] (7.5)

By Equations 7.3, 7.4, and 7.5, we infer ρ[v] ≥ γ[u]. We have proved ρ[v] =
γ[v].

One motivation for finding a consistent price vector is to transform a shortest-
path instance into a simpler shortest-path instance; however, such a transfor-
mation seems useless if, as suggested by Lemma 7.1.3, carrying it out requires
that we first solve the original shortest-path instance! Nevertheless, the trans-
formation can be quite useful:

• Having distances from one vertex r simplify the computation of distances
from other vertices (e.g. the all-pairs-distances algorithm of [?]).

• An algorithm can maintain a price function and preserve its consistency
over many iterations (e.g. the min-cost flow algorithm of [?]).

This lemma suggests a way of using a price vector to certify that a tree is a
shortest-path tree.

Lemma 7.1.6. Let ρ be a price vector that is consistent with respect to c. If T
is a rooted spanning tree every dart of which is tight then T is a shortest-path
tree with respect to c.

Proof. With respect to the slack costs, every dart has nonnegative cost, and
every path in T has zero cost, so every path in T is a shortest path with respect
to cρ and hence (by Corollary 7.1.2) with respect to c.

Lemma 7.1.3 shows that distances form a consistent price function. However,
distances do not exist if there are negative-cost cycles. The following lemma
states that, in this case, consistent price functions also do not exist.

Lemma 7.1.7. If ρ is a consistent price vector for G with respect to c then G
contains no negative-cost cycles.

Proof. By a telescoping sum, the slack cost of any cycle C equals its original
cost. If ρ is a consistent price vector then every dart of d has nonnegative slack
cost, so C has nonnegative slack cost and hence nonnegative cost.

86 CHAPTER 7. MULTIPLE-SOURCE SHORTEST PATHS

7.2 Specification of multiple-source shortest paths

In this chapter, we study a problem called the multiple-source shortest paths
(MSSP).

• input: a directed planar embedded graph G with a designated infinite
face f∞, a vector c assigning lengths to darts, and a shortest-path tree T0

rooted at one of the vertices of f∞.

• output: a representation of the shortest-path trees rooted at the vertices
on the boundary of f∞.

Our goal is to give an algorithm that solves this problem in O(n log n) time
where n is the number of vertices (assuming no parallel edges). There is an
obvious obstacle: each shortest-path tree consists of n − 1 edges, so explicitly
outputting one for each of the possibly many vertices on the boundary of f∞
could take far more than Ω(n log n) time.

To resolve this difficulty, we use a simple implicit representation of the
shortest-path trees. Let d1 · · · dk be the cycle of darts forming the boundary
of f∞

d1
d2

d3d11

d12

where tail(d1) is the root of the given shortest-path tree T0. For i = 1, . . . , k, let
Ti be the shortest-path tree rooted at head(di). The algorithm will describe the
changes required to transform T0 into T1, the changes needed to transform T1

into T2, . . . , and the changes needed to transform Tk−1 into Tk. We will show
that the total number of changes is at most the number of finite-length darts of
G.

7.2.1 Pivots

The basic unit of change in a rooted tree T , called a pivot, consists of ejecting
one dart d− and inserting another dart d+ so that the result is again a rooted
tree. A pivot is specified by the pair (d−, d+) of darts.1

Transforming T from Ti−1 to Ti consists of

• a special pivot that ejects the dart whose head is head(di), and inserts the
dart rev(di) (now T is head(di)-rooted), and

• a sequence of ordinary pivots each of which ejects a dart d� and inserts a
dart d̂ with the same head.

1The term pivot comes from an analogy to the network-simplex algorithm.

7.3. CONTIGUITY PROPERTYOF SHORTEST-PATH TREES IN PLANARGRAPHS87

For i = 1, . . . , k, the MSSP algorithm outputs the sequence of pivots that
transform Ti−1 into Ti. We shall show that the time per pivot is O(log n). The
number of special pivots is k. In the next section, we show that the number of
ordinary pivots is at most the number of finite-length darts. It follows that the
running time is O(n log n).

7.3 Contiguity property of shortest-path trees
in planar graphs

Let G be a graph, let c be a dart vector, and let d be a dart. For a vertex u, we
say d is u-tight with respect to c if d is tight with respect to the from-u distance
vector with respect to c.

Lemma 7.3.1. There is a u-rooted shortest-path tree containing d iff d is u-
tight.

Problem 7.3.2. Prove Lemma 7.3.1 using Lemma 7.1.6.

The following lemma is the key to the analysis of the MSSP algorithm and
the single-source max-flow algorithm presented in Chapter 9. It is illustrated in
Figures 7.2 and 7.3,

Lemma 7.3.3. Let G be a planar embedded graph with infinite face f∞, and
let c be a dart vector. Let r1, r2, r3, r4 be vertices on f∞ in order. For any dart
d, if d is r1-tight and r3-tight then it is r2-tight or r4-tight.

Corollary 7.3.4 (Consecutive-Roots Corollary). Let G be a planar embedded
graph with infinite face f∞, and let c be a dart vector. Let (d1 d2 · · ·) be the
cycle of darts forming the boundary of f∞.

For each dart d, the set

{i : d is head(di)-tight} (7.6)

forms a consecutive subsequence of the cycle (1 2 · · ·).

Corollary 7.3.5. The number of pivots required to transform shortest-path tree
Ti−1 into Ti, summed over all i, is at most the number of finite-cost darts.

7.4 Using the output of the MSSP algorithm

There are several ways to use the output of the MSSP algorithm.

88 CHAPTER 7. MULTIPLE-SOURCE SHORTEST PATHS

v
d

r1

r4

r3
r2

Figure 7.2: If the shortest r1-to-v and r3-to-v paths use d but the shortest
r2-to-v and r4-to-v paths do not, one of the latter must cross one of the former.

v
d

r3
r2

u
P1

P2

Figure 7.3: Let u denote a vertex at which they cross. Since P1 ◦ d is a shortest
u-to-v path, it is no longer than P2. Replacing P2 with P1 ◦ d in the shortest
r2-to-v path shows that d is r2v-tight, a contradiction.

7.4. USING THE OUTPUT OF THE MSSP ALGORITHM 89

7.4.1 Paths

We can use the output to build a data structure that supports queries of the
form ShortestPath(head(di), v) where di is a dart of the boundary of f∞ and v
is an arbitrary vertex.

Fix a vertex v, and let b1, . . . , bdegree(v) be the darts entering v. For each

dart di on the boundary of f∞, define

g(i) = min{j : bj is head(di)-tight}

Note that bg(i) is the last dart in a shortest head(di)-to-v path.
Corollary 7.3.4 implies that, for each entering dart bj , the set {i : g(v, i) = j}

forms a consecutive subsequence of (1 2 · · ·). For different entering darts, the
subsequences are disjoint. The data structure of [?] enables one to Using, e.g.,
the data structure of [?], one can represent g(·) in O(degree(v)) space so that
computing g(i) takes O(log log k) time where k is the number of darts on the
boundary of f∞. Overall all vertices v, the space required is linear in the size of
the graph. Given these data structures, a query ShortestPath(head(di), v) can
be answered iteratively by constructing the path backwards from v to head(di),
one dart per iteration. The time for each iteration is O(log log k), so constructing
a shortest-path consisting of � edges takes time O(� log log n).

7.4.2 Distances

We describe a Distances algorithm that processes the output of the MSSP
algorithm to answer a given set of q queries of the form distance(tail(di), v)
in time O((n + q) log n). The Distances algorithm maintains a link-cut tree
representation of T as T goes from T0 to T1 to ... to Tk. The link-cut tree assigns
weights to the vertices. The Distances algorithm ensures that the weight of v
is the length of the root-to-v path in T . For i = 0, 1, . . . , k − 1, when T is the
tail(di)-rooted shortest-path tree, the Distances algorithm queries the link-cut
tree to find the weights of those vertices v for which the tail(di)-to-v distance is
desired. The time per pivot and per query is O(log n).

Now we give the algorithm more formally. We represent the evolving shortest-
path tree T using a link-cut-tree data structure that supports AddToDescen-
dants and GetWeight. We maintain the invariant that the weight assigned
in T to each vertex v is the length of the root-to-v path in T .

90 CHAPTER 7. MULTIPLE-SOURCE SHORTEST PATHS

def Distances(d1 · · · dk, T0,P,Q):
pre: d1 · · · dk are the darts of f∞,

T0 is the tail(d1)-rooted shortest-path tree,
P is the sequence of pivots (d�, d̂) produced by the MSSP algorithm
Q is an array such that Q[i] is a set of vertices

post: returns the set D = {(i, v, dist(tail(di), v)) : v ∈ Q[i]} of distances
1 initialize T :=link-cut tree representing T0 with weight(v) := c(T0[v]))
2 initialize D = ∅, i := 0
3 for each pivot (d�, d̂) in P,
4 if (d�, d̂) is a special pivot,// about to transform to next tree...
5 i := i+ 1

// ... but first find distances in current tree
6 for each v ∈ Q[i],
7 append (i, v, T.GetWeight(v)) to D

// perform pivot
8 T.Cut(tail(d�)) // remove d� from T
9 T.AddToDescendants(head(d�),−T.GetWeight(head(d))
10 T.Link(tail(d̂), head(d̂)) // add d̂ to T
11 T.AddToDescendants(head(d�), c[d̂] + T.GetWeight(tail(d))
12return Q

In Line 4, if the next pivot in the sequence is a special pivot, it means that
the current tree is a shortest-path tree, so now is the time to find distances from
the current root. The algorithm maintains the invariant that the weight of each
vertex v in T is the length of the root-to-v path in T , so in Line 7 the distance
to v is the weight of v.

Lines 8-11 carry out a pivot. Line 8 ejects d�, breaking the tree into two trees,
one with the same root as before and one rooted at head(d�). Line 9 updates the
weights of vertices in the latter tree to preserve the invariant. Line 10 inserts
d̂, forming a single tree once again. Line 11 again updates the weights of the
vertices that were in the latter tree to preserve the invariant.

7.5 The abstract MSSP algorithm

We present an abstract description of an algorithm for MSSP. Later we will
present a more detailed description.

def MSSP(G, f∞, T):
pre: T is a shortest-path tree rooted at a vertex of f∞
let (d1 d2 · · · ds) be the darts of f∞, where tailG(d1) is the root of T
for i := 1, 2, . . . , s,

// T is a tail(di)-rooted shortest-path tree
(Ai, Bi) :=ChangeRoot(T, di) // transform T to a head(di)-rooted

7.6. CHANGEROOT: THE INNER LOOP OF THEMSSP ALGORITHM91

// shortest-path tree by removing dart-set Ai and adding Bi

// the darts of Ai are not head(di)-tight
return (A1, . . . , As) and (B1, . . . , Bs)

7.5.1 Analysis of the abstract algorithm

Lemma 7.5.1. For each dart d, there is at most one iteration i such that
d ∈ Ai.

Proof. By the Consecutive-Roots Corollary (Corollary 7.3.4), there is at most
one occurence of a vertex r on f∞ such that d is r-tight but is not r�-tight where
r� is the next vertex in consecutive order on f∞.

Corollary 7.5.2.
�

i |Ai| is at most the number of darts.

7.6 ChangeRoot: the inner loop of the MSSP
algorithm

The procedure ChangeRoot(T, di) called in MSSP consists of a loop each
iteration of which selects a dart to add to T and a dart to remove from T .
We show later that setting up the loop takes O(log n) time, the number of
iterations is |Ai|, and each iteration takes amortized O(log n) time. The time
for ChangeRoot is therefore O((|Ai|+1) log n). Summing over all i and using
Corollary 7.5.2, we infer that the total time for ChangeRoot and therefore for
MSSP is O(n log n).

In each iteration, the algorithm determines that a dart d̂ not in T must be
added to T . It then pivots d into T , which means

• removing from T the dart whose head is head(d) and

• adding d to T .

This operation is called a pivot because it resembles a step of the network-
simplex algorithm.

Conceptually, ChangeRoot is as follows. Let c0 denote the tail(di)-to-
head(di) distance in G. To initialize, ChangeRoot temporarily sets the cost
of the dart rev(di) to −c0, removes from T the dart whose head is tail(rev(di)),
and inserts rev(di) into T . It then gradually increases the cost of rev(di) to
its original cost while performing pivots as necessary to maintaing that T is a
shortest-path tree.

After the initialization, the procedure uses a variable t to represent the
current modified cost of rev(di). The costs of other darts remain unmodified.
Let ct denote the vector of costs. That is,

ct[d] =

�
t if d = rev(di)
c[d] otherwise

92 CHAPTER 7. MULTIPLE-SOURCE SHORTEST PATHS

Figure 7.4: The two trees differ by a single pivot.

Under these costs, the cost of the path in T to a vertex v is denoted ρT,t[v].
The vector ρT,t is not represented explictly by the algorithm; we use it in the
analysis and proof of correctness.

Lemma 7.6.1. There is no negative-cost cycle in G with respect to the costs
ct.

Proof. Let C be any simple cycle of darts in G. If C does not contain rev(di)
then ct(C) = c(C) ≥ 0. Otherwise, write C = rev(di) ◦ P . Then

ct(C) = ct(rev(di)) + ct(P)

≥ −c0 + c0

After initialization, the procedure ChangeRoot repeats the following two
steps until t equals the original cost of rev(di):

• Increase t until any further increase would result in some dart d becoming
tense with respect to ct and ρT,t.

• Pivot d into T .

Lemma 7.6.2. Throughout the execution, T is a shortest-path tree with respect
to the costs ct.

Proof. We prove the lemma by induction. For the basis of the induction, we
must prove that T is a shortest-path tree immediately after rev(di) is pivoted
in.

Define ρ to be the from-tail(di) distance vector with respect to c. At the
very beginning of ChangeRoot, before rev(di) is pivoted in, T is a shortest-
path tree, so by Lemma 7.1.3 its darts are tight with respect to ρ and c. Since
ct is identical to c on these darts, they are also tight with respect to ct.

7.7. WHICH DARTS ARE CANDIDATES FOR PIVOTING IN 93

-
-

-

-

-

+

+

+

rev(di)

Figure 7.5: This figure shows the coloring of vertices. Those vertices reached
through rev(di) are blue and the others are red. The red-to-blue nontree arcs
are labeled with - to indicate that their slack costs decrease as the algorithm
progresses. The blue-to-red nontree arcs are labled with + to indicate that their
slack costs increase. The red-to-red and blue-to-blue arcs remain unchanged.

By Lemma 7.1.6, it remains only to show that rev(di) itself is tight when it
is first pivoted in. At this time, its cost ct[rev(di)] is

−c0 = −(ρ[tail(rev(di))]− ρ[head(rev(di))])

so its slack cost is zero. This completes the basis of the induction.
Now for the induction step. We assume T is a shortest-path tree. The

variable t is increased until further increase would result in some dart d becoming
tense with respect to ct and ρT,t. At this point, d is tight. Therefore, by
Lemma 7.1.6, pivoting d into T yields a shortest-path tree.

7.7 Which darts are candidates for pivoting in

In this section, we consider the loop of ChangeRoot in which t is increased.
The algorithm pivots in a dart d only if necessary, i.e. if continuing the

shrinking or growing phase without pivoting in d would result in T not being a
shortest-path tree, in particular if d would become tense with respect to c and
ρT,t. A dart d is in danger of becoming tense only if its slack cost with respect
to ρT,t is decreasing.

We define a labeling of the vertices with colors. For each vertex v, if the
root-to-v path contains rev(di) then we say v is blue, and otherwise we say v is
red.

94 CHAPTER 7. MULTIPLE-SOURCE SHORTEST PATHS

f1

f!

Figure 7.6: This figure illustrates that the edges whose slack costs are changing
form a cycle, the fundamental cycle of rev(di). The duals of darts on the f1-to-
f∞ path decrease in slack cost, and their reverses increase in slack cost.

Lemma 7.7.1. Suppose that t increases by ∆. For a dart dart d not in T , the
slack cost of d

• decreases if tailG(d) is red and headG(d) is blue,

• increases if tailG(d) is blue and headG(d) is red, and

• otherwise does not change.

Suppose rev(di) is in T . Then the fundamental cut of rev(di) with respect to
T has the form �δG(S) where S is the set of red vertices. When the cost of rev(di)
increases by ∆, by Lemma 7.7.1, the darts of this cut (not including rev(di)) un-
dergo a decrease of ∆ in their slack costs. By Fundamental-Cut/Fundamental-
Cycle Duality (4.6.1), these are the darts belonging to the the fundamental cycle
of rev(di) in the dual G∗ with respect to T ∗.

Since tailG∗(rev(di)) is f∞, this cycle, minus the dart rev(di) itself, is the
path in T ∗ from headG∗(rev(di)) to f∞. We summarize this result as follows:

Lemma 7.7.2. Suppose rev(di) is in T and its cost increases by ∆. This results
in a decrease by ∆ in the slack costs of the darts of the headG∗(rev(di))-to-f∞
path in T ∗, and a decrease by ∆ in the slack costs of the reverse darts.

7.8. EFFICIENT IMPLEMENTATION 95

7.8 Efficient implementation

The concrete version of MSSP does not explicitly represent the distances ρT,t[·].
Instead, it represents the slack costs of the darts whose edges are not in T . This
permits an efficient implementation of ChangeRoot.

7.8.1 ChangeRoot

Now we give the procedure ChangeRoot. (We later describe how it is imple-
mented using data structures.)

def ChangeRoot(T, di):
pre: The root of T is tailG(di)

1 initialize Ai, Bi := ∅.
2 t := −c[di] + slack cost of di
3 remove from T the dart whose head is headG(di) and add rev(di)
4 comment: now the root of T is head(di)
5 repeat
6 let P be the headG∗(rev(di))-to-f∞ path in T ∗

7 find a dart d̂ in P whose slack cost ∆ is minimum
8 if t+∆ > c[rev(di)] then return (Ai, Bi)
9 subtract ∆ from from the slack costs of darts in P
10 add ∆ to t and to the slack costs of reverses of darts P
11 remove from T the dart whose head is headG(d̂), and add it to Ai

12 add d̂ to T and to Bi

13 if T no longer contains rev(di), return (Ai, Bi)

The correctness of the analysis in Section 7.5.1 depends on the following
lemma.

Lemma 7.8.1. Each dart added to Ai is not headG(di)-tight.

Proof. Conside an iteration of the repeat-loop. Since the dart d̂ selected in
Line 7 is in P , its head is blue and its tail is red. Let d̃ be the dart that in
Line 11 is removed from T and added to Ai. Consider the vertex-coloring before
Line 11 is executed. Since d̂ and d̃ share heads, the head of d̃ is blue. Since d̃ is
in T , and no dart other than rev(di) is in both T and the fundamental cycle of
rev(di) with respect to T ∗, it follows that the the tail of d̃ is also blue.

Consider the moment just after Lines 11 and 12 are executed. Since d̂ has
been added to T , its head has become red.

7.8.2 Data structure

To support efficient implementation, MSSP represents T in two ways. It rep-
resents T directly via a table, and represents T indirectly by representing the
interdigitating tree T ∗ (rooted at f∞) by a link-cut tree.

96 CHAPTER 7. MULTIPLE-SOURCE SHORTEST PATHS

5

1-3

3 1

-24

-1

Figure 7.7: The left figure shows a tree. The right figure indicates that the tree
must be represented by a data structure in such a way that each edge has two
weights, the slack cost of the rootward dart and the slack cost of the leafward
dart. The operation AddToAncestor(v,∆) operates on the edges of the v-
to-root path. For each edge, the operation subtracts ∆ from the rootward dart
and adds ∆ to the leafward dart.

The table parentD[·] stores, for each vertex v that is not the root of T , the
dart of T whose head is v (the parent dart of v).

The link-cut tree representing T ∗ has a node for each vertex of G∗ and a
node for each edge of T ∗. The edge-nodes are assigned pairs of weights; the
weights associated with edge e are (wR(e), wL(e)), where wR is the slack cost of
the dart of e oriented towards the root f∞ and wL is the slack cost of the dart
of e oriented away from the root.

In each iteration, in Line 7 the algorithm uses a AncestorFindMin op-
eration on the link-cut tree representing T ∗ to select the dart d̂ to insert into
T and obtain the dart’s slack cost ∆. In Line 11 the algorithm uses the table
parentD[·] to find which dart must therefore be removed from T . In Lines 9
and 10, the algorithm updates the slack costs along P using the operation
AddToAncestors(headG∗(rev(di)),∆).

The topological changes to T in Lines 11 and 12 are carried out by making
topological changes to T ∗ using operations Cut, Evert, and Link. First, the
dart d̂ being pivoted into T must be removed from T ∗ by a Cut operation.
This breaks T ∗ into two trees, one rooted at f∞ and one rooted at tailG∗(d̂).
Next, as shown in Figure 7.8, an Evert operation must be performed on the
latter tree to reroot it at headG∗(d�) where d� = parentD[headG(d̂)] is the dart
to be removed from T in Line 11. This reorients the path from headG∗(d�) to
headG∗(d̂). Finally, now that headG∗(d�) is the root, this tree is linked to the
one rooted at f∞ by performing Link(headG∗(d�), tailG∗(d�)).

The link-cut tree must support GetWeight, Evert, AddToAncestor,
and AncestorFindMin. Moreover, since eversion changes which dart of an
edge e is oriented towards the root, the weights must be handled carefully.

Each iteration of the repeat-loop of Line 5 thus requires a constant number of
link-cut-tree operations It follows that the time for iteration i of MSSP requires
amortized time O((1 + |Ai|) log n). By Corollary 7.5.2,

�
i(1 + |Ai|) is at most

the number of darts plus the size of the boundary of f∞. Since the initialization
of the data structures takes linear time, it follows that MSSP requires time
O(n log n).

7.8. EFFICIENT IMPLEMENTATION 97

d̂

d�

Figure 7.8: This figure shows the need for reversing the direction of a path in
the dual tree T ∗. The dual tree is shown using rootward darts. The diagram
on the left shows the situation just before a pivot. The red dashed edge d̂ is
about to be pivoted into T , which causes the corresponding dual edge to be
removed from T ∗. The thick black edge must be removed from T , which causes
the corresponding dual edge to be added to T ∗. The figure on the right shows
the resulting situation. Note that the thick edges in the dual tree have reversed
direction.

