Chapter 4

Planar embedded graphs

4.1 Planar embeddings

We say that an embedding 7 of a graph G = (V, E) is planar if it satisfies
Euler’s formula: n — m + ¢ = 2k, where n=number of nodes, m=number of
arcs, ¢=number of faces, and k=number of connected components. In this
case, we say (m, F) is a planar embedded graph or plane graph.

Problem 4.1. Specify formally a smallest embedded graph that is not a planar
embedded graph. (This is not the assume as giving the smallest graph that has
no planar embedding; in fact, your graph should be a planar graph.) You should
give the embedding ™ and a drawing in which the darts are labeled. (You will
have to find some way of drawing the embedding even though that embedding is
not planar.) Then give the dual in the same way, using a permutation and a
drawing.

The definition of planarity immediately implies the following lemma.

Lemma 4.1.1. 7 is a planar embedding of G iff, for each connected component
G’ of G, the restriction @' of to darts of G’ is a planar embedding of G.

Lemma 4.1.2. The dual of a planar embedded graph is planar.

Problem 4.2. Prove Lemmal[{.1.2,

4.2 Contraction preserves planarity

Our goal for this section is to show that contracting an edge preserves planarity.

Lemma 4.2.1. Let G be a planar embedded graph, and let e be an edge that is
not a self-loop. Then G/e is a planar embedded graph.

41

42 CHAPTER 4. PLANAR EMBEDDED GRAPHS

Proof. Let n,m, ¢,k be the number of vertices, edges, faces, and connected
components of G. By planarity, n — m + ¢ = 2x. Let G’ = dual(G* —e). Let
n',m’, ¢, k" be the number of vertices, edges, faces, and connected components
of G'. Clearly m’ = m — 1. By Lemma [3.4.7] the underlying graph of G’ is that
obtained from the underlying graph of G by contraction of e, so n’ =n —1. By
Lemma [3.4.6] e is not a cut-edge in G*. It follows from the Cut-Edge Lemma
(Lemma that k" = k. Also, because e is not a cut-edge in G*, it is not
the only edge incident to a vertex of G*. Therefore, deleting e from G* does not
change the number of vertices in Gj, so ¢’ = ¢. Therefore n’ —m/+¢' = 2x'. O

4.3 Sparsity of planar embedded graphs

Lemma 4.3.1 (Sparsity Lemma). For a planar embedded graph in which every
face has size at least three, m < 3n — 6, where m is the number of edges and n
1s the number of vertices.

Problem 4.3. Prove the Sparsity Lemma, and show that the upper bound is
tight by showing that, for every integer m > 3, there is an n-vertexr planar
embedded graph whose number of edges achieves the bound.

Problem 4.4. Prove a lemma analogous to the Sparsity Lemma in which faces
of size one are permitted.

4.3.1 Strict graphs and strict problems

A face of size two consists of two parallel edges, edges with the same endpoints.
A face of size one consists of a self-loop. A graph with neither parallel edges
nor self-loops is a strict graph. !

For many optimization problems, it is sufficient to consider strict graphs.
Consider an optimization problem whose input includes a graph G and a dart
vector . We say a graph optimization problem is strict if there is a constant-time
procedure that, given an instance Z and a pair of parallel edges or a self-loop,
modifies the instance to eliminate one of the parallel edges or the self-loop, such
that, given an optimal solution for the modified instance, an optimal solution
for the original instance can be obtained in constant time.

Consider, for example, the problem of finding a minimum-weight spanning
tree . A self-loop can simply be eliminated because it will never appear in any
spanning tree. Given a pair of parallel edges, the one with greatest weight can
be eliminated since it will not appear in the minimum-weight spanning tree.
Therefore finding a minimum-weight spanning tree is a strict problem. Many
other problems discussed in this book, such as shortest paths, maximum flow,
the traveling salesman problem, and the Steiner tree problem, can similarly be
shown to be strict. For a strict problem, we generally assume that the input
graph is strict and therefore has at most three times as many edges as vertices.

We also discuss a problem, two-edge-connected spanning subgraph, that is
not, strictly speaking, strict. However, by using a similar technique we can

4.3. SPARSITY OF PLANAR EMBEDDED GRAPHS 43

ensure that there are no triples of parallel edges. It follows that we can assume
for this problem that there are at most six times as many edges as vertices.

4.3.2 Semi-strictness

Strictness is too strict. A weaker property, semi-strictness, can be more easily
established and maintained. We say an embedded graph is semi-strict if every
face has size at least three. The Sparsity Lemma applies to such graphs.

The strictness of a problem can be exploited more thoroughly to obtain an
algorithm.

Theorem 4.3.2. There is a linear-time algorithm to compute a minimum-
weight spanning tree in a planar embedded graph.

Here is a (not fully specified) algorithm for computing a minimum-weight
spanning tree.

def MST(G):

1 if G has no edges, return ()

2 let é be an edge of G contained in some MST of G
3 contract é

4 eliminate some parallel edges

return {é} UMST(G)

The choice of € in Line 2 is guided by the following observation.

Lemma 4.3.3. Let G be a connected undirected graph with edge-weights, let v
be a vertex of G, and let e be a minimum-weight edge incident to v. Then there
is a minimum-weight spanning tree of G that contains e.

Problem 4.5. Prove Lemmal[}.3.5, and then prove Theorem [{.3.2 by showing
how to implement MST for semi-strict planar embedded graphs in such a way
that each iteration takes constant time.

4.3.3 Orientations with bounded outdegree

An orientation of a graph is a set O of darts consisting of exactly one dart of
each edge. We say it is an a-orientation if each each vertex is the tail of at most
a darts.

Corollary 4.3.4 (Orientation Corollary). Fuvery semi-strict planar embedded
graph has a 5-orientation.

Problem 4.6. Prove the Orientation Corollary.

One simple application of the Orientation Corollary is maintaining a repre-
sentation of a planar embedded graph to support queries of the form

“Is there an edge whose endpoints are v and v?”

44 CHAPTER 4. PLANAR EMBEDDED GRAPHS

Here is the representation. For each vertex u, maintain a list of u’s outgoing
darts. To check whether there is an edge with endpoints u and v, search in the
list of u and the list of v. Since each list has at most five darts, answering the
query takes constant time.

4.3.4 Maintaining a bounded-outdegree orientation for a
dynamically changing graph

For an unchanging graph, the same bound can be obtained for all graphs simply
by using a hash function. However, the orientation-based approach can be used
even when the graph undergoes edge deletions and contractions, and we will see
how this can be used in efficient implementations of other algorithms.

An orientation O is represented by an array adj[] indexed by vertices. For
vertex v, adj[v] is a list consisting of the darts in O that are outgoing from v.

Let G be a semi-strict planar embedded graph, and let O be a 14-orientation
of G. Suppose G’ is obtained from G by deleting an edge e. Then O —
{darts of e} is a 14-orientation for G’, and the representation adj[-] can be up-
dated as follows:

def DELETE(e):
let v be the endpoint of e such that adj[v] contains a dart d of e
remove d from adj[v]

Suppose instead that G’ is obtained from G by contracting e, and that G’
remains semi-strict. The vertex resulting from coalescing the endpoints of e
might have more than fourteen outgoing darts in O — {darts of e}. However, a
14-orientation of G’ can be found as follows:

def CONTRACT(e):
let w and v be the endpoints of e
let w be the vertex obtained by coalescing u and v
adj[w] := adj[u] U adj[v] — {darts of e}
if |adj[w]| > 14,
S = {w}
while S # (),
remove a vertex z from S
for each dart zy € adj[z],
add yz to adjy]
if |adj[y]| > 14, add y to S
adj[z] := 0

4.3.5 Analysis of the algorithm for maintaining a bounded-
outdegree orientation

The key to analyzing the algorithm is the following lemma.

4.3. SPARSITY OF PLANAR EMBEDDED GRAPHS 45

Lemma 4.3.5. For any semi-strict plane graph G, any orientation O of G,
and any vertex v, there is a path of size at most [log, 5 |V(G)[] =1 from v to a
vertex whose outdegree is at most 3.

Proof. Let V; denote the set of vertices reachable from v via paths of size at
most i consisting of darts in @. We prove that, for each i > 1, if V; contains
no vertex of outdegree at most 3, then |Vj;1| > §|VZ| If V[10g4/3 n(G)]—1 con-
tains no vertex of outdegree at most 3, it would follow that Ve, /s @l >

(4/3)1e8a/3 V(AN > 17(@)], a contradiction.

Let E; be the set of darts in O whose tails are in V;. Suppose that each vertex
in V; has outdegree at least four, so |E;| > 4|V;|. The graph induced by E; obeys
the Sparsity Lemma, so |E;| < 3|V;11| — 6. Combining these inequalities yields
Via] > 4IVi. O

We show a bound of O((k + n)logn) on the total time for maintaining a
14-orientation using DELETE and CONTRACT for k operations on an mn-vertex
graph.

Consider a sequence of semi-strict planar embedded graphs

Go,...,Gp
such that, for: = 1,...,k, G; is obtained from G;_; by a deletion or a contrac-
tion. Let n = max; n(G;).
Lemma 4.3.6. There exist 5-orientations Oy, ...,Or of Go,...,Gk respec-
tively, such that, for i =1,...,k, there are al most log, 31 edges whose orien-
tations in O; and O;_1 differ.
Proof. We construct the sequence Oy,...,O; backwards. Since Gj is semi-

strict, it has a 5-orientation. Let Oy be this 5-orientation.

Suppose we have constructed a 5-orientation O; of G; for some ¢ > 1. We
show how to construct a 5-orientation O;_1 of G;_1. First suppose G; was
obtained from G;_; by contraction of an edge uwv, and let w be the vertex of G;
resulting from coalescing v and v. The number of darts in O; outgoing from u
and v in G;_; is the number outgoing from w in G;, so is at most five. Hence
in G;_1 at least one of u and v has fewer than five outgoing darts in O;. Let d
be the dart of uv oriented out of whichever of v and v has fewer outgoing darts
in O;, and let O;_1 := O; U{d}. Then O,_; is a 5-orientation of G;_.

Now suppose G; was obtained from G;_; by deletion of an edge or contrac-
tion of a leaf edge. Let uv be one of the darts of the edge in G;_1 and not in G;.
Let O be the orientation O; U {uv}. Note that O might not be a 5-orientation
because v might have outdegree 6. However, by Lemma there is a path
P of size at most [logn] — 1 consisting of darts in O from u to a vertex of
outdegree at most 3. Let O;_1 be the orientation obtained from O by replacing
the darts of P with their reverses. This replacement reduces the outdegree of u
by one and increases the outdegree of the end of P, so O;_; is a 5-orientation
of Gi—l- O]

46 CHAPTER 4. PLANAR EMBEDDED GRAPHS

Now we can analyze the use of DELETE and CONTRACT in maintaining an
14-orientation of a changing semi-strict plane graph GG. The time for a delete
operation is O(1). The time for a contract operation is O(1) not including the
time spent in the while-loop of CONTRACT. The time spent in the while-loop
is proportional to the number of changes to orientations of edges. The next
theorem proves that the number of such changes is O(m + klog n), which shows
that the total time is also O(m + klogn).

Theorem 4.3.7. As G is transformed from Gy to Gy to --- to Gy, the total
number of changes to the orientation is O(n + klogn).

Proof. Lemma [4.3.6| showed that there are 5-orientations Oy, Oq,...,0Of of
Go,G1,. .., Gy such that each consecutive pair of orientations differ in at most
[logn] edges. When G is one of Go, Gy, ...,Gy, we denote by O[G] the corre-
sponding 5-orientation.

We use O to denote the orientation maintained by the algorithm (and rep-
resented by adj[-]).

For the purpose of amortized analysis, we define the potential function

(G,0) =0 - 0[q]|

We say an edge of G is good if O and O[G] agree on its orientation, and bad
otherwise. Then & is the number of bad edges. The value of the potential is
always nonnegative and is always at most m, the number of edges in Gy.

Consider the effect on ® of a delete or contract operation. Since the operation
is accompanied by a change in O[G] in the orientations of at most logn edges,
the potential ® goes up by at most log n. Since there are k operations, the total
increase due to these changes is at most klogn.

The loop in CONTRACT also has an effect on the value of the potential. In
each iteration, a vertex x with outdegree greater than 14 is removed from S and
the outgoing darts of = are replaced in O with their reverses. The replacement
turns good edges into bad edges and bad edges into good edges. Before the
replacement, at most five of z’s outgoing darts were in O[G] so at most five
edges were good. Thus at most five good edges turn to bad, and at least
15 —5 = 10 bad edges turn to good. The net reduction in ® is therefore at least
10-5=5.

Since the initial value of ® is at most m and the increase due to operations
(not counting the loop) is at most klogn, the total reduction in ® throughout
is at most m + klogn. Since each iteration of the loop reduces ® by at least 5,
the number of iterations is at most %.

FEach iteration changes the orientations of many edges; we next analyze the
total number of orientation changes. Since each iteration changes at most five
edges from good to bad, the total number of edges changed from good to bad
is as at most m + klogn. Initially the number of bad edges is at most m, so
there are at most 2m + klogn changes of edges from bad to good. Thus the
total number of orientation changes is 3m + 2klogn. O

2

4.4. CYCLE-SPACE BASIS FOR PLANAR GRAPHS 47
4.4 Cycle-space basis for planar graphs

Lemma 4.4.1. Let G be a planar embedded graph. For each vertex v of G and
each vertex f of G*,

n(v)-n(f) =0

Proof. Let D~ be the set of darts in f having v as head. Let Dt be the set
of darts in f having v as tail. Since m(v) assigns 1 to darts in D" and -1 to

darts in D™, the dot product is |[DT| — |[D~|. Note that, for each d € D™,
7*(d) belongs to DT, and, for each d € D, (7*)~1(d) belongs to D~. Hence
|D*| = |D~|. This shows the dot product is zero. O

Corollary 4.4.2 (Cut-Space/Cycle-Space Duality). The cut space of G* is the
cycle space of G.

Proof. For simplicity, assume G is connected. Let vo, and f. be vertices of G
and G*, respectively. A basis for the cut space of G is

{n(v) :veV(G)—{ve}}

and a basis for the cut space of G* is

{n(f) : feV(G") —{f}}

By Lemma[4.4.1] the vectors in the basis for the cut space of G* are orthogonal
to the vectors in the basis for the cut space of G, so the former belong to the
orthogonal complement of the cut space of G, i.e. to the cycle space of G.
Moreover, the former basis has cardinality exactly one less than the number of
faces in G, which equals |E(G)|— |V (G)|+1, which is the dimension of the cycle
space of G. This proves the corollary. O

MacLane [S. MacLane, “A combinatorial condition for planar graphs,” Fund. Math.
28 (1937), p.22-32.] in fact formulated a criterion for planarity based on cycle-cut
duality.

48 CHAPTER 4. PLANAR EMBEDDED GRAPHS

Problem 4.7. Consider the graph G given by the following geometric embed-
ding.

Represent each of the cycles (green and blue) using the basis {n(f) : f €
V(G*) — {fxo}} of the cut space of G*. Write your answer as a vector of
coefficients.

4.4.1 Representing a circulation in terms of face potentials

Recall from Section that a vector in the cycle space of G is called a cir-
culation in G. Tt follows from Cut-Space/Cycle-Space duality (Corollary
that an arc vector 6 is a circulation iff it can be written as a linear combination
of basis vectors

0=> {pm(f) : fEVIG)—{fx}}

The sum does not include a term corresponding to f... It is convenient to adopt
the convention that p; . = 0 and include the term p;_p(foo) in the sum. We
can then represent the coefficients by a face vector p, and so write

0=> {plfin(f) : feV(G)} (4.1)

Even if p[foo] # 0, since 1(foo) is a circulation, the sum is a circulation. In
this context, we refer to the coefficients p[f] as face potentials.

We can write the relation between a circulation and face potentials more
concisely using the dart-vertex incidence matrix Ag~ of the dual G*. (We
could call this the dart-face incidence matriz of G.)

0=Acp

4.5. INTERDIGITATING TREES 49

Problem 4.8. Let G = (A,) be a planar embedded graph. Consider a vector
0 in cycle space. Suppose 0 is given as a linear combination of the basis vectors
of the cut space of G*,

0= > pmlf)

FeV(G*)—{foo}

The vector @ can be expressed in the standard basis of arc space as

0= Z Can((av +1))

a€A

Give a closed form expression for the coefficients c¢,. You may use heady(d)
and tailg (d) in your answer to denote the head (tail) of a dart d in a graph H.

4.5 Interdigitating trees

Lemma 4.5.1. Suppose G is a connected plane graph with a spanning tree T.
Every cycle in G* has an edge in T.

Proof. Let C* be a cycle in G*. Since n(C*) is in the cycle space of G*, it is
in the cut space of G by Cut-Space/Cycle-Space duality, so it can be written in
terms of the fundamental cut basis of G with respect to T"

n(C*) = Z aem(fundamental cut of e)
eeT

Since the left-hand side is nonzero, there is at least one edge é € T such that
as # 0. Since different edges of T' are not in each other’s fundamental cuts, it
follows that the sum assigns a nonzero value to a dart of é. This proves the
lemma. O

Corollary 4.5.2. Let G be a plane graph. If T is a spanning tree of G then the
edges E(G) — E(T) form a spanning tree of G*.

Problem 4.9. Prove Corollary[{.5.2

If T is a spanning tree of a plane graph G, we use T to denote the spanning
tree of G* whose edges are E(G) — E(T). We refer to T* as the dual spanning
tree with respect to T in G. The trees T and T™ are called interdigitating trees.

Interdigitating trees combined with rootward computations give rise to sim-
ple algorithms for some problems in planar graphs, as illustrated in the following
problems. Beware, however, that the choice of the root of 7" might be signifi-
cant.

50 CHAPTER 4. PLANAR EMBEDDED GRAPHS

Problem 4.10. Using rootward computation (Section on the dual tree, give
a simple linear-time algorithm for the following problem.

e input: a planar embedded graph G, a spanning tree T, and a vertex r

e output: a table that, for each nontree edge uv of G, gives the least common
ancestor of u and v in T rooted at r

Problem 4.11. Using the result of Problem give a simple linear-time
algorithm for the following problem.

e input: a planar embedded graph G with edge-weights and a spanning tree
T

e output: a table that, for each nontree edge e of G, gives the total weight
of the fundamental cycle of e with respect to T'.

Problem 4.12. Show that a connected planar graph G with edge-weights can
be represented so as to support the following operations in O(logn) amortized
time:

o Given an edge e of G, determine whether e is in a minimum-weight span-
ning tree of G.

o Given an edge e of G and a number \, set the weight of e to \.

4.6 Simple-cut/simple-cycle duality

Lemma 4.6.1 (Fundamental-Cut/Fundamental-Cycle Duality). Let G be a
connected planar embedded graph with spanning tree T and let é be an edge
of T. Then

{darts of the fundamental cut of é in G with respect to T}
= {darts of the fundamental cycle of é in G* with respect to T*}

Proof. Let C* be the fundamental cycle of é in G* with respect to T*. As in
the proof of Lemma[4.5.1] we write 5(C*) in terms of the fundamental cut basis
of G with respect to T

n(C*) = Z aem(fundamental cut of e)
ecT

Since different edges are not in each other’s fundamental cuts, for each edge
e €T, if a, # 0 then n(C*) assigns nonzero values to the darts of e. However,
the only edge of T" with darts in C* is é, so the sum in the right-hand side
is just agm(fundamental cut of é). Furthermore, since the primary dart of é
is assigned 1 by both n(C*) and n(fundamental cut of), we conclude that
ag = 1. Thus n(C*) = n(fundamental cut of é), which proves the lemma. O

4.6. SIMPLE-CUT/SIMPLE-CYCLE DUALITY 51

Theorem 4.6.2 (Simple-Cycle/Simple-Cut Theorem). Let G be a planar em-
bedded graph. A monempty set of darts forms a simple cycle in G* iff the set
forms a simple cut in G.

Proof. We prove the theorem for the case in which G is connected. The result
immediately follows for disconnected graphs as well.

(only if) Let C* be a simple cycle in G*. Let é be an edge of C*, and let P* be
the simple path in G* such that C* = P*oé. By the matroid property of forests
(Corollary , there exists a spanning tree T of G* containing the edges of
P*. Note that C* is the fundamental cycle of é with respect to T*. Therefore, by
Fundamental-Cut/Fundamental-Cycle Duality (Lemma [4.6.1), the darts form-
ing C* are the darts forming a fundamental cut in G, and such a cut is a simple
cut by the Fundamental-Cut Lemma (Lemma [3.2.1).

(if) Let S1 be a set of vertices of G such that 5@(5’1) is a simple cut. Let
Sy = V(G) — S1. By definition of simple cut in a connected graph, for i = 1,2,
the vertices of S; are connected; let T; be a tree connecting exactly the vertices

— -

of S;. Let d be a primary dart such that d is in §(S1) or §(S2), and let e be

- -

the edge of d. Let T'= Ty UT> U {e}. Then 6(S7) or §(S2) is a fundamental
cut with respect to 7', and so by Fundamental-Cut/Fundamental-Cycle Duality
(Lemma [4.6.1)), its darts form a simple cycle in G*. O

4.6.1 Compressing self-loops
Figure [4.1] shows some examples of compressing edges.

Figure 4.1: Examples of compressing an edge é in G (solid lines and filled
vertices), i.e. deleting é from G* (dashed lines and open vertices).

Compressing a self-loop in a planar embedded graph is an interesting opera-
tion. The graph can be divided into two parts, the part enclosed by the self-loop

52 CHAPTER 4. PLANAR EMBEDDED GRAPHS

and the part not enclosed. These parts have only one vertex in common, namely
the endpoint of the self-loop. Compression has the effect of duplicating the com-
mon vertex, and attaching each part to its own copy.

The Simple-Cycle/Simple-Cut Theorem immediately yields the following.

Corollary 4.6.3. If e is a self-loop in a planar embedded graph G then e is a
cut-edge in G*.

We use the corollary to help analyze the effect of compressing a self-loop in
a planar graph.

Lemma 4.6.4. If G is a planar embedded graph and e is a self-loop then G/e
s planar.

Proof. Let n,m, ¢,k be the number of vertices, edges, faces, and connected
components of G. By planarity, n — m + ¢ — 2k = 0. Let n’,m’,¢’, k" be the
numbers for G’ = dual(G* — e). In order to prove that G’ is planar, it suffices
to show that n’ —m/ +¢' — 2k =n —m + ¢ — 2k.

Clearly m’ = m — 1. By Corollary e is a cut-edge in G*.

First suppose each endpoint of e in G* has degree greater than one. In
this case, deletion of e does not cause the elimination of its endpoints in G*.
Therefore ¢’ = ¢. Since e is a cut-edge, deleting it increases the number of
connected components, so k' = k + 1 (using the Connectivity Corollary, which
is Corollary [3.4.5). Let v be the common endpoint of the self-loop e in G, and
let the corresponding permutation cycle be (dy dy -+ dg -+ dy), where dy and
dy, are the darts corresponding to e. In G*, v is a face. Deletion of e in G*
breaks the face up into (dg dy --- di—1) and (dg+1 --- dy) and leaves all other
faces alone. Since faces of G* are vertices of G, we infer n’ =n + 1. Thus

n—-m'+¢ -2=mn+1)—(m-1)—¢p—-2(k+1)=n—m—9¢—2k

If exactly one of the endpoints of e in G* has degree one, that endpoint will
disappear when e is deleted, so ¢’ = ¢ — 1, and there is no change to the number
of connected components. In this case,

n—m'+¢ —2"=n—-(m-1)+(@—-1)-2s=n—m+¢—2k
If both endpoints of e in G* have degree one, deleting e eliminates both

endpoints (vertices of G*), a connected component, and a face of G*, so ¢ =
-2,k =k—1,andn’ =n—1.

n—-m'+¢ -2=n-1)—(m-1)+(@p—-2)—2(k—1)=n—m+¢—2k
O

4.6.2 Compression and deletion preserve planarity

Combining Lemma with Lemma shows that compression preserves
planarity. Since compression in the dual is deletion in the primal, it follows that
deletion preserves planarity. We state these results as follows

Theorem 4.6.5. For a planar embedded graph G and an edge e, G—e and G /e
are planar embedded graphs.

4.7. LEFT, RIGHT, AND CROSSINGS 53

4.7 Left, right, and Crossings

4.7.1 Emanating and entering from left and right

Let W be a walk, and let a and b be two consecutive darts of W. Let ¢ be a
dart with head(c) = head(a). We say that ¢ enters W from the right (left) if
the permutation cycle at head(c) induces the cycle a ¢ rev(b) (a rev(b) ¢). We
say that ¢ emanates right (left) of W if rev(c) enters W from the right (left).
We say that a walk W’ enters W from the right (left) at head(a) if there is a
dart ¢ of W’ with head(c) = head(a) that enters W from the right (left).

4.7.2 Crossing walks

Two kinds of crossing: sets that cross (violate laminarity) and paths/cycles that
cross in a graph sense. Here we mean the latter.

Let W be a (possibly empty) walk, and let P =a W b and Q = ¢ W d be
walks that are identical except for their first and last darts. We say that) and
P form a crossing configuration if ¢ enters P from the left and d emanates right
of P or if ¢ enters P from the right and d emanates left of P.

We say a walk P crosses a walk @ if a subwalk of P and a subwalk of @

form a crossing configuration.

4.8 Faces, edges, and vertices enclosed by a non-
self-crossing cycle

A path P of darts is non-self-crossing if it does not form a crossing configuration
with itself.

Let C be a non-self-crossing cycle of darts in a connected plane graph G.
The set. of faces not enclosed by C' is the set F' of faces such that C' = §¢- (F).
All other faces of G are enclosed by C.

Sometimes we wish to discuss enclosure with respect to a simple cycle of
edges C'. To break the symmetry we use an arbitrary face, fo, designated the
infinite face of G. We the say the cycle C' encloses a face f with respect to f
if E(C) =0(S) where f €S, fooc & 5.

The following definitions apply both in the directed case and in the undi-
rected case. Using the Path/Cut Lemma (Lemma, we immediately obtain

Proposition 4.8.1. Let G be a connected plane graph, and let C be a cycle
of Gr. Fvery path in G* from a face not enclosed by C to a face enclosed by C
goes through an edge of C.

We say C encloses a vertex (an edge) if C encloses a face whose boundary
contains the vertex (a dart of the edge), and strictly encloses the edge or vertex
if in addition the vertex is not on C' (no dart of the edge is on C).

Using Proposition and Corollary we obtain

54 CHAPTER 4. PLANAR EMBEDDED GRAPHS

Proposition 4.8.2. Let G be a connected plane graph, and let C be a cycle of
Gr. Every path in G from a vertex not enclosed by C to a vertex enclosed by C
goes through a vertex of C.

Problem 4.13. Let C' be a non-self-crossing cycle. Prove that if dart d is
strictly enclosed by C' and tail(d) is a vertex of C then d emanates right of C.

The interior of a cycle C is the subgraph consisting of edges and vertices
enclosed by C. The exterior is the subgraph consisting of edges and vertices not
strictly enclosed by C. The strict interior and exterior are similarly defined.

4.9 Trimming

Let C = dy,ds,...,d; be a non-self-crossing cycle of darts in a plane graph
G = (m, E). The operation of trimming G along C produces a new graph G’ =
(7', E"). Informally, this operation can be described by imagining a drawing
of G on a piece of paper, cutting the paper with scissors along the cycle C,
and keeping only the part of G that is enclosed by the cycle C. Formally, let
ER be the set of arcs of G that are strictly enclosed of C. The set of arcs
E' of G' is Er|JUF_je;. That is, E' consists of Er and of a new arc e; for
every dart d; of C. Let 7TI*R be the restriction of 7* to the orbits of the faces
of G that are enclosed C. Let (7')* be the permutation obtained from TR
by replacing every dart d; of C' with the dart (e;, 1), and adding the orbit
((ex, —1), (eg—1,—1),(dg—2,—1)...(e1,—1)). The permutation 7" is defined by
7 = (7')*". See Fig. for an illustration.

AN ~ LN N
o K\
BT Xy

Figure 4.2: Trimming along a non-simple non-self-crossing cycle. Top: before
trimming along the blue counterclockwise (left) and counterclockwise (right)
non-self-crossing cycle of darts. Bottom: after trimming.

4.10. BICONNECTIVITY 55

We extend the definition to trimming along a tree of edges in G. The Euler
tour of T is a non-self-crossing cycle of darts C' in which each dart of each edge
of T appears exactly once, and such that, for any two consecutive darts d,d’
of C, the first dart of C' that appears after d in the orbit of head(d) is rev(d’).
Trimming along 7T is defined as trimming along the Euler tour of T'. See Fig.|4.3

Figure 4.3: Trimming along a path P (blue edges). Top: before trimming.
Bottom: after trimming.

4.10 Biconnectivity

A graph is biconnected if every pair of edges belong to some simple cycle.

Lemma 4.10.1. If a planar embedded graph G is biconnected then so is the
planar dual G*.

Proof. Let e, e’ be a pair of edges. Let C be a simple cycle containing e and e¢’. C
exists since G is biconnected. By the Simple-Cycle/Simple-Cut (Theorem,
C is a simple cut in G*. Let p and p’ be disjoint simple paths between the
endpoints of e and €’ in each side of the cut in G*. Thus, eopoe’op’ is a simple
cycle in G*, so G* is biconnected. O

Lemma 4.10.2. If G is a planar embedded biconnected graph then every face
s a simple cycle.

56 CHAPTER 4. PLANAR EMBEDDED GRAPHS

Proof. Assume some face f of G is not a simple cycle. Let di,ds,... be the
darts of f. Since f is not a simple cycle, there exists a vertex v and indices
i < j < k such that v = tail(d;) = head(d;) = tail(d,;1+1) = head(dy). Choose
such i, 7, k that minimize k — 4 (i.e., j is the only index between i and k whose
head or tail is v). Contract all the darts d;y1...dg—1, so that now tail(d;) =
head(d;) = tail(dy) = head(dy). In the resulting graph, the edges e; of d; and ey,
of dj are both self loops incident to v, so they belong to no simple cycle. Since
the only edges contracted are those of the non simple cycle f, uncontracting
these edges does not introduce a simple cycle containing both e; and e;. Hence
G is not biconnected. O

4.11 Representing embedded graphs in imple-
mentations

It makes sense to base our computer representation of embedded graphs on the
mathematical representation. We will even use this representation when we
don’t care about the embedding.

For the purpose of specifying algorithms, our finite set E will consist of
positive integers. For example, if |E| = m then we can use the integers 1...m.
We also need a way to represent darts, remembering that each element of F
corresponds to two darts. We use some convention to represent each dart as an
integer. (T'wo ways: use +/- or use a low-order bit). A permutation 7 of darts
is represented by a pair of arrays, one for the forward direction and one for the
backward direction. That way, it takes O(1) time to go from a dart d to the
darts 7[d] and 7 *[d].

We also have to discuss the implementation of arc deletion. It will be nec-
essary to delete arcs in constant time. The key is to allow some integers to
become unused.

Deletion of an arc consists of deletion of its two darts from the representation
of the permutation .

	Rooted forests and trees
	Rootward computations
	Separators for rooted trees
	Node separator

	Edge separators
	Computation time for finding separators
	Recursive tree decomposition

	Basic graph definitions
	Edge-centric definition of graphs
	Walks, paths, and cycles
	Connectedness
	Two-edge-connectivity and cut-edges
	Subgraphs and edge subgraphs
	Deletion of edges and vertices
	Contraction of edges
	Minors

	Elementary graph theory
	Spanning forests and trees
	Nontree edges and fundamental cycles

	Cuts
	(Undirected) cuts
	(Directed) dicuts
	Dart cuts
	Simple cuts
	Tree edges and fundamental cuts
	Paths and Cuts

	Vector Spaces
	The cut space
	The cycle space
	Bases for the cut space and the cycle space
	Another basis for the cut space
	Conservation and circulations

	Embedded graphs
	Embeddings
	Euler characteristic and genus
	Remark on the connection to geometric embeddings
	The dual graph
	Connectedness properties of embedded graphs
	Cut-edges and self-loops
	Deletion
	Compression (deletion in the dual) and contraction

	Chapter Notes

	Planar embedded graphs
	Planar embeddings
	Contraction preserves planarity
	Sparsity of planar embedded graphs
	Strict graphs and strict problems
	Semi-strictness
	Orientations with bounded outdegree
	Maintaining a bounded-outdegree orientation for a dynamically changing graph
	Analysis of the algorithm for maintaining a bounded-outdegree orientation

	Cycle-space basis for planar graphs
	Representing a circulation in terms of face potentials

	Interdigitating trees
	Simple-cut/simple-cycle duality
	Compressing self-loops
	Compression and deletion preserve planarity

	Left, right, and Crossings
	Emanating and entering from left and right
	Crossing walks

	Faces, edges, and vertices enclosed by a non-self-crossing cycle
	Trimming
	Biconnectivity
	Representing embedded graphs in implementations

	Separators in planar graphs
	Triangulation
	Weights and balance
	Fundamental-cycle separators
	Breadth-first search
	O(n)-vertex separator
	Size of the separator

	Noncrossing families of subsets
	The connected-components tree
	Vertex and face labels
	The connected-components tree

	Cycle separators
	Shortcutting a fundamental-cycle separator
	Balanced, short, and simple cycle

	Division into regions
	Computing a Decomposition Tree
	Number of Holes
	Number of Vertices and Boundary Vertices
	Admitting an r–division
	Running time

	Recursive divisions
	Chapter Notes

	Shortest paths with nonnegative lengths
	Shortest-path basics: path-length property and relaxed and tense darts
	Using a division in computing shortest-path distances
	The algorithm

	Correctness
	The Dijkstra-like property of the algorithm
	Accounting for costs
	The Payoff Theorem
	Analysis
	Parameters
	History

	Multiple-source shortest paths
	Slack costs, relaxed and tense darts, and consistent price vectors
	Slack costs
	Relaxed and tense darts
	Consistent price vectors

	Specification of multiple-source shortest paths
	Pivots

	Contiguity property of shortest-path trees in planar graphs
	The abstract MSSP algorithm
	Analysis of the abstract algorithm

	ChangeRoot: the inner loop of the MSSP algorithm
	Which darts are candidates for pivoting in?
	Efficient implementation
	ChangeRoot
	Data structure

	Number of pivots - the degenerate case
	Using the output of the MSSP algorithm
	Paths
	Distances
	Distance data structure

	Chapter Notes

	Shortest paths with negative lengths
	Total Monotonicity and the Monge Property
	Boundary distances and the Monge Property
	Finding all column minima of a Monge matrix
	Finding all the column minima of a triangular Monge matrix

	The Algorithm
	Computing Single-Source Inter-Part Boundary Distances
	Computing Single-Source Inter-Part Distances
	Correctness and Analysis
	Chapter Notes

	Shortest paths in dense distance graphs
	Decomposing a DDG into bipartite graphs
	The Monge heap
	Implementing Dijkstra's algorithm using Monge heaps
	Analysis

	Implementing Monge heaps
	Analysis

	Chapter Notes

	Single-source, single-sink max flow
	Flow assignments, capacity assignments, and feasibility
	Negative capacities

	Circulations
	Capacity-respecting circulations in planar graphs

	st-flows
	Max limited flow in st-planar graphs
	st-planar embedded graphs and augmented st-planar embedded graphs
	The set-up
	The algorithm

	Max flow in general planar graphs
	The algorithm
	Erickson's analysis
	Dual tree is shortest-path tree
	Crossing numbers

	Covering space
	The Universal Cover

	Finishing the proof
	Efficient Implementation
	Chapter Notes

	Multiple-source, multiple-sink max flow
	Distance Oracles
	An approximate distance oracle for undirected planar graphs
	Overall strategy
	Connections to a shortest path
	The oracle
	Efficient construction

	An Exact distance oracles with (n) space and (n) query time
	An exact oracle with (n4/3) space and O(log2 n) query time
	Additively weighted Voronoi diagrams.
	Point location in Voronoi diagrams
	The oracle

	Primal-dual method for approximation algorithm
	Goemans and Williamson's analysis of the primal-dual approximation algorithm
	Proving the bound for vertex-weighted Steiner tree
	Covering all directed cycles

	Branchwidth and local approximation schemes
	Dynamic programming on a rooted tree
	Carvings
	Carving-decomposition: carving of a vertex set
	Solving edge dominating set on a graph with a carving-decomposition of small width

	Carving-decomposition of a planar graph
	Branch decomposition: Carving of an edge-set
	Solving vertex cover on a graph with a branch decomposition of small width
	Biconnectivity and the block-cut tree
	Biconnected components and branchwidth

	A branchwidth bound for planar graphs
	The face-vertex incidence graph
	The embedded face-vertex incidence graph
	The dual of the face-incidence graph
	From a carving-decomposition of M(G) to a branch-decomposition of G
	Proof of the Radius-Branchwidth Theorem

	Approximation schemes
	The subgraph induced by k BFS levels has branchwidth at most 2k
	An approximation scheme for Vertex Cover
	An approximation scheme for maximum-weight independent set
	Maximum-weight set of edge-disjoint triangles
	Summary of approximation-scheme methodology

	Approximation scheme for the traveling salesman problem
	Cutting into small pieces
	First attempt
	Approximation through deletion decomposition

	The traveling salesman problem
	Approximating unit-weight Eulerian Bisubgraph
	Beyond unit-weight graphs: a sparsifier
	Contraction decomposition
	The framework
	Dual framework

	Properties of tours
	Lifting for TSP
	Spanner
	TSP on bounded-branchwidth planar graphs

	The brick decomposition and approximation schemes for Steiner problems
	Introducing the brick decomposition
	Portals
	Portalization
	Spanners for Steiner TSP and Steiner tree
	Beyond spanners: A more efficient PTAS for Steiner tree
	Brick decomposition: the construction
	Strip decomposition
	Columns

	Statement of subroutine lemmas for Steiner tree structure theorem
	Structure of Steiner tree within bricks
	Paths 0, …,
	The forest F' and paths Q0, …, Q
	The forest
	Type-1 and type-2 components
	Construction of
	Decomposition of Ki into KiN and KiS
	Span1
	Span2

	Approximation Schemes for some problems with optional connectivity
	Introduction
	PC Clustering
	The PC Clustering algorithm
	The weight of the output from the PC Clustering algorithm

	Appendix: Splay trees and link-cut trees
	Binary Search Trees
	Delta Representation of weights
	Supporting searches for small weight
	Delta Representation of min-weights
	Delta representation of left-right
	Rotation: An order-preserving structural change to a binary search tree
	Updating Delta representations in a rotation
	Updating minw representations in a rotation

	Splay trees
	Potential Functions for Amortized Analysis
	Analysis of splay trees

	Representation of link-cut trees
	High-level analysis of the expose operation
	Representation of trees
	Link-cut trees that do not support descendant search
	Implementing the expose operation for trees not supporting descendant search
	Analysis of Expose(u) for trees not supporting descendant search

	Link-cut trees that support descendant search
	Topological updates in link-cut trees
	Analysis of link and cut operations
	Evert

	Weight updates for link-cut trees
	Supporting AddToDescendants
	Supporting AddToAncestors
	Getting the weight of a node

	Weight searches in link-cut trees
	Supporting ancestor searches
	Supporting descendant searches
	Representing trees with dart weights

	Chapter Notes

