
Chapter 4

Planar embedded graphs

4.1 Planar embeddings

We say that an embedding ⇡ of a graph G = (V, E) is planar if it satisfies
Euler’s formula: n � m + � = 2, where n=number of nodes, m=number of
arcs, �=number of faces, and =number of connected components. In this
case, we say (⇡, E) is a planar embedded graph or plane graph.

Problem 4.1. Specify formally a smallest embedded graph that is not a planar
embedded graph. (This is not the assume as giving the smallest graph that has
no planar embedding; in fact, your graph should be a planar graph.) You should
give the embedding ⇡ and a drawing in which the darts are labeled. (You will
have to find some way of drawing the embedding even though that embedding is
not planar.) Then give the dual in the same way, using a permutation and a
drawing.

The definition of planarity immediately implies the following lemma.

Lemma 4.1.1. ⇡ is a planar embedding of G i↵, for each connected component
G0 of G, the restriction ⇡0 of ⇡ to darts of G0 is a planar embedding of G.

Lemma 4.1.2. The dual of a planar embedded graph is planar.

Problem 4.2. Prove Lemma 4.1.2.

4.2 Contraction preserves planarity

Our goal for this section is to show that contracting an edge preserves planarity.

Lemma 4.2.1. Let G be a planar embedded graph, and let e be an edge that is
not a self-loop. Then G/e is a planar embedded graph.
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Proof. Let n, m, �,  be the number of vertices, edges, faces, and connected
components of G. By planarity, n � m + � = 2. Let G0 = dual(G⇤ � e). Let
n0, m0, �0, 0 be the number of vertices, edges, faces, and connected components
of G0. Clearly m0 = m� 1. By Lemma 3.4.7, the underlying graph of G0 is that
obtained from the underlying graph of G by contraction of e, so n0 = n � 1. By
Lemma 3.4.6, e is not a cut-edge in G⇤. It follows from the Cut-Edge Lemma
(Lemma 2.2.2) that 0 = . Also, because e is not a cut-edge in G⇤, it is not
the only edge incident to a vertex of G⇤. Therefore, deleting e from G⇤ does not
change the number of vertices in Gj, so �0 = �. Therefore n0�m0+�0 = 20.

4.3 Sparsity of planar embedded graphs

Lemma 4.3.1 (Sparsity Lemma). For a planar embedded graph in which every
face has size at least three, m  3n � 6, where m is the number of edges and n
is the number of vertices.

Problem 4.3. Prove the Sparsity Lemma, and show that the upper bound is
tight by showing that, for every integer n � 3, there is an n-vertex planar
embedded graph whose number of edges achieves the bound.

Problem 4.4. Prove a lemma analogous to the Sparsity Lemma in which faces
of size one are permitted.

4.3.1 Strict graphs and strict problems

A face of size two consists of two parallel edges, edges with the same endpoints.
A face of size one consists of a self-loop. A graph with neither parallel edges
nor self-loops is a strict graph. 1

For many optimization problems, it is su�cient to consider strict graphs.
Consider an optimization problem whose input includes a graph G and a dart
vector c. We say a graph optimization problem is strict if there is a constant-time
procedure that, given an instance I and a pair of parallel edges or a self-loop,
modifies the instance to eliminate one of the parallel edges or the self-loop, such
that, given an optimal solution for the modified instance, an optimal solution
for the original instance can be obtained in constant time.

Consider, for example, the problem of finding a minimum-weight spanning
tree . A self-loop can simply be eliminated because it will never appear in any
spanning tree. Given a pair of parallel edges, the one with greatest weight can
be eliminated since it will not appear in the minimum-weight spanning tree.
Therefore finding a minimum-weight spanning tree is a strict problem. Many
other problems discussed in this book, such as shortest paths, maximum flow,
the traveling salesman problem, and the Steiner tree problem, can similarly be
shown to be strict. For a strict problem, we generally assume that the input
graph is strict and therefore has at most three times as many edges as vertices.

We also discuss a problem, two-edge-connected spanning subgraph, that is
not, strictly speaking, strict. However, by using a similar technique we can
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ensure that there are no triples of parallel edges. It follows that we can assume
for this problem that there are at most six times as many edges as vertices.

4.3.2 Semi-strictness

Strictness is too strict. A weaker property, semi-strictness, can be more easily
established and maintained. We say an embedded graph is semi-strict if every
face has size at least three. The Sparsity Lemma applies to such graphs.

The strictness of a problem can be exploited more thoroughly to obtain an
algorithm.

Theorem 4.3.2. There is a linear-time algorithm to compute a minimum-
weight spanning tree in a planar embedded graph.

Here is a (not fully specified) algorithm for computing a minimum-weight
spanning tree.

def MST(G):
1 if G has no edges, return ;
2 let ê be an edge of G contained in some MST of G
3 contract ê
4 eliminate some parallel edges

return {ê} [ MST(G)

The choice of ê in Line 2 is guided by the following observation.

Lemma 4.3.3. Let G be a connected undirected graph with edge-weights, let v
be a vertex of G, and let e be a minimum-weight edge incident to v. Then there
is a minimum-weight spanning tree of G that contains e.

Problem 4.5. Prove Lemma 4.3.3, and then prove Theorem 4.3.2 by showing
how to implement MST for semi-strict planar embedded graphs in such a way
that each iteration takes constant time.

4.3.3 Orientations with bounded outdegree

An orientation of a graph is a set O of darts consisting of exactly one dart of
each edge. We say it is an ↵-orientation if each each vertex is the tail of at most
↵ darts.

Corollary 4.3.4 (Orientation Corollary). Every semi-strict planar embedded
graph has a 5-orientation.

Problem 4.6. Prove the Orientation Corollary.

One simple application of the Orientation Corollary is maintaining a repre-
sentation of a planar embedded graph to support queries of the form

“Is there an edge whose endpoints are u and v?”
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Here is the representation. For each vertex u, maintain a list of u’s outgoing
darts. To check whether there is an edge with endpoints u and v, search in the
list of u and the list of v. Since each list has at most five darts, answering the
query takes constant time.

4.3.4 Maintaining a bounded-outdegree orientation for a
dynamically changing graph

For an unchanging graph, the same bound can be obtained for all graphs simply
by using a hash function. However, the orientation-based approach can be used
even when the graph undergoes edge deletions and contractions, and we will see
how this can be used in e�cient implementations of other algorithms.

An orientation O is represented by an array adj[·] indexed by vertices. For
vertex v, adj[v] is a list consisting of the darts in O that are outgoing from v.

Let G be a semi-strict planar embedded graph, and let O be a 14-orientation
of G. Suppose G0 is obtained from G by deleting an edge e. Then O �
{darts of e} is a 14-orientation for G0, and the representation adj[·] can be up-
dated as follows:

def Delete(e):
let v be the endpoint of e such that adj[v] contains a dart d of e
remove d from adj[v]

Suppose instead that G0 is obtained from G by contracting e, and that G0

remains semi-strict. The vertex resulting from coalescing the endpoints of e
might have more than fourteen outgoing darts in O � {darts of e}. However, a
14-orientation of G0 can be found as follows:

def Contract(e):
let u and v be the endpoints of e
let w be the vertex obtained by coalescing u and v
adj[w] := adj[u] [ adj[v] � {darts of e}
if |adj[w]| > 14,

S := {w}
while S 6= ;,

remove a vertex x from S
for each dart xy 2 adj[x],

add yx to adj[y]
if |adj[y]| > 14, add y to S

adj[x] := ;

4.3.5 Analysis of the algorithm for maintaining a bounded-
outdegree orientation

The key to analyzing the algorithm is the following lemma.
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Lemma 4.3.5. For any semi-strict plane graph G, any orientation O of G,
and any vertex v, there is a path of size at most dlog4/3 |V (G)|e � 1 from v to a
vertex whose outdegree is at most 3.

Proof. Let Vi denote the set of vertices reachable from v via paths of size at
most i consisting of darts in O. We prove that, for each i � 1, if Vi contains
no vertex of outdegree at most 3, then |Vi+1| > 4

3 |Vi|. If Vdlog4/3 n(G)e�1 con-

tains no vertex of outdegree at most 3, it would follow that |Vdlog4/3 |V (G)|e| >

(4/3)dlog4/3 |V (G)|e � |V (G)|, a contradiction.
Let Ei be the set of darts in O whose tails are in Vi. Suppose that each vertex

in Vi has outdegree at least four, so |Ei| � 4|Vi|. The graph induced by Ei obeys
the Sparsity Lemma, so |Ei|  3|Vi+1| � 6. Combining these inequalities yields
|Vi+1| > 4

3 |Vi.

We show a bound of O((k + n) log n) on the total time for maintaining a
14-orientation using Delete and Contract for k operations on an n-vertex
graph.

Consider a sequence of semi-strict planar embedded graphs

G0, . . . , Gk

such that, for i = 1, . . . , k, Gi is obtained from Gi�1 by a deletion or a contrac-
tion. Let n = maxi n(Gi).

Lemma 4.3.6. There exist 5-orientations O0, . . . , Ok of G0, . . . , Gk respec-
tively, such that, for i = 1, . . . , k, there are at most log4/3 n edges whose orien-
tations in Oi and Oi�1 di↵er.

Proof. We construct the sequence O0, . . . , Ok backwards. Since Gk is semi-
strict, it has a 5-orientation. Let Ok be this 5-orientation.

Suppose we have constructed a 5-orientation Oi of Gi for some i � 1. We
show how to construct a 5-orientation Oi�1 of Gi�1. First suppose Gi was
obtained from Gi�1 by contraction of an edge uv, and let w be the vertex of Gi

resulting from coalescing u and v. The number of darts in Oi outgoing from u
and v in Gi�1 is the number outgoing from w in Gi, so is at most five. Hence
in Gi�1 at least one of u and v has fewer than five outgoing darts in Oi. Let d
be the dart of uv oriented out of whichever of u and v has fewer outgoing darts
in Oi, and let Oi�1 := Oi [ {d}. Then Oi�1 is a 5-orientation of Gi�1.

Now suppose Gi was obtained from Gi�1 by deletion of an edge or contrac-
tion of a leaf edge. Let uv be one of the darts of the edge in Gi�1 and not in Gi.
Let O be the orientation Oi [ {uv}. Note that O might not be a 5-orientation
because u might have outdegree 6. However, by Lemma 4.3.5, there is a path
P of size at most dlog ne � 1 consisting of darts in O from u to a vertex of
outdegree at most 3. Let Oi�1 be the orientation obtained from O by replacing
the darts of P with their reverses. This replacement reduces the outdegree of u
by one and increases the outdegree of the end of P , so Oi�1 is a 5-orientation
of Gi�1.
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Now we can analyze the use of Delete and Contract in maintaining an
14-orientation of a changing semi-strict plane graph G. The time for a delete
operation is O(1). The time for a contract operation is O(1) not including the
time spent in the while-loop of Contract. The time spent in the while-loop
is proportional to the number of changes to orientations of edges. The next
theorem proves that the number of such changes is O(m+k log n), which shows
that the total time is also O(m + k log n).

Theorem 4.3.7. As G is transformed from G0 to G1 to · · · to Gk, the total
number of changes to the orientation is O(n + k log n).

Proof. Lemma 4.3.6 showed that there are 5-orientations O0, O1, . . . , Ok of
G0, G1, . . . , Gk such that each consecutive pair of orientations di↵er in at most
dlog ne edges. When G is one of G0, G1, . . . , Gk, we denote by O[G] the corre-
sponding 5-orientation.

We use Õ to denote the orientation maintained by the algorithm (and rep-
resented by adj[·]).

For the purpose of amortized analysis, we define the potential function

�(G, bO) = | bO � O[G]|

We say an edge of G is good if bO and O[G] agree on its orientation, and bad
otherwise. Then � is the number of bad edges. The value of the potential is
always nonnegative and is always at most m, the number of edges in G0.

Consider the e↵ect on � of a delete or contract operation. Since the operation
is accompanied by a change in O[G] in the orientations of at most log n edges,
the potential � goes up by at most log n. Since there are k operations, the total
increase due to these changes is at most k log n.

The loop in Contract also has an e↵ect on the value of the potential. In
each iteration, a vertex x with outdegree greater than 14 is removed from S and
the outgoing darts of x are replaced in bO with their reverses. The replacement
turns good edges into bad edges and bad edges into good edges. Before the
replacement, at most five of x’s outgoing darts were in O[G] so at most five
edges were good. Thus at most five good edges turn to bad, and at least
15�5 = 10 bad edges turn to good. The net reduction in � is therefore at least
10 � 5 = 5.

Since the initial value of � is at most m and the increase due to operations
(not counting the loop) is at most k log n, the total reduction in � throughout
is at most m + k log n. Since each iteration of the loop reduces � by at least 5,
the number of iterations is at most m+k logn

5 .
Each iteration changes the orientations of many edges; we next analyze the

total number of orientation changes. Since each iteration changes at most five
edges from good to bad, the total number of edges changed from good to bad
is as at most m + k log n. Initially the number of bad edges is at most m, so
there are at most 2m + k log n changes of edges from bad to good. Thus the
total number of orientation changes is 3m + 2k log n.

2
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4.4 Cycle-space basis for planar graphs

Lemma 4.4.1. Let G be a planar embedded graph. For each vertex v of G and
each vertex f of G⇤,

⌘(v) · ⌘(f) = 0

Proof. Let D� be the set of darts in f having v as head. Let D+ be the set
of darts in f having v as tail. Since ⌘(v) assigns 1 to darts in D+ and -1 to
darts in D�, the dot product is |D+| � |D�|. Note that, for each d 2 D�,
⇡⇤(d) belongs to D+, and, for each d 2 D+, (⇡⇤)�1(d) belongs to D�. Hence
|D+| = |D�|. This shows the dot product is zero.

Corollary 4.4.2 (Cut-Space/Cycle-Space Duality). The cut space of G⇤ is the
cycle space of G.

Proof. For simplicity, assume G is connected. Let v1 and f1 be vertices of G
and G⇤, respectively. A basis for the cut space of G is

{⌘(v) : v 2 V (G) � {v1}}

and a basis for the cut space of G⇤ is

{⌘(f) : f 2 V (G⇤) � {f1}}

By Lemma 4.4.1, the vectors in the basis for the cut space of G⇤ are orthogonal
to the vectors in the basis for the cut space of G, so the former belong to the
orthogonal complement of the cut space of G, i.e. to the cycle space of G.
Moreover, the former basis has cardinality exactly one less than the number of
faces in G, which equals |E(G)|� |V (G)|+1, which is the dimension of the cycle
space of G. This proves the corollary.

MacLane [S. MacLane, “A combinatorial condition for planar graphs,” Fund. Math.
28 (1937), p.22–32.] in fact formulated a criterion for planarity based on cycle-cut
duality.
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Problem 4.7. Consider the graph G given by the following geometric embed-
ding.

f1

f1

f2

f3

f4

f5f6f7

f8

f9 f10

f11

Represent each of the cycles (green and blue) using the basis {⌘(f) : f 2
V (G⇤) � {f1}} of the cut space of G⇤. Write your answer as a vector of
coe�cients.

4.4.1 Representing a circulation in terms of face potentials

Recall from Section 3.3.5 that a vector in the cycle space of G is called a cir-
culation in G. It follows from Cut-Space/Cycle-Space duality (Corollary 4.4.2)
that an arc vector ✓ is a circulation i↵ it can be written as a linear combination
of basis vectors

✓ =
X

{⇢f⌘(f) : f 2 V (G⇤) � {f1}}

The sum does not include a term corresponding to f1. It is convenient to adopt
the convention that ⇢f1 = 0 and include the term ⇢f1⇢(f1) in the sum. We
can then represent the coe�cients by a face vector ⇢, and so write

✓ =
X

{⇢[f ]⌘(f) : f 2 V (G⇤)} (4.1)

Even if ⇢[f1] 6= 0, since ⌘(f1) is a circulation, the sum 4.1 is a circulation. In
this context, we refer to the coe�cients ⇢[f ] as face potentials.

We can write the relation between a circulation and face potentials more
concisely using the dart-vertex incidence matrix AG⇤ of the dual G⇤. ( We
could call this the dart-face incidence matrix of G.)

✓ = AG⇤ ⇢
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Problem 4.8. Let G = (A, ⇡) be a planar embedded graph. Consider a vector
✓ in cycle space. Suppose ✓ is given as a linear combination of the basis vectors
of the cut space of G⇤,

✓ =
X

f2V (G⇤)�{f1}

⇢f⌘(f).

The vector ✓ can be expressed in the standard basis of arc space as

✓ =
X

a2A

ca⌘((a, +1)).

Give a closed form expression for the coe�cients ca. You may use headH(d)
and tailH(d) in your answer to denote the head (tail) of a dart d in a graph H.

4.5 Interdigitating trees

Lemma 4.5.1. Suppose G is a connected plane graph with a spanning tree T .
Every cycle in G⇤ has an edge in T .

Proof. Let C⇤ be a cycle in G⇤. Since ⌘(C⇤) is in the cycle space of G⇤, it is
in the cut space of G by Cut-Space/Cycle-Space duality, so it can be written in
terms of the fundamental cut basis of G with respect to T :

⌘(C⇤) =
X

e2T

↵e⌘(fundamental cut of e)

Since the left-hand side is nonzero, there is at least one edge ê 2 T such that
↵ê 6= 0. Since di↵erent edges of T are not in each other’s fundamental cuts, it
follows that the sum assigns a nonzero value to a dart of ê. This proves the
lemma.

Corollary 4.5.2. Let G be a plane graph. If T is a spanning tree of G then the
edges E(G) � E(T ) form a spanning tree of G⇤.

Problem 4.9. Prove Corollary 4.5.2.

If T is a spanning tree of a plane graph G⇡, we use T ⇤ to denote the spanning
tree of G⇤ whose edges are E(G) � E(T ). We refer to T ⇤ as the dual spanning
tree with respect to T in G⇡. The trees T and T ⇤ are called interdigitating trees.

Interdigitating trees combined with rootward computations give rise to sim-
ple algorithms for some problems in planar graphs, as illustrated in the following
problems. Beware, however, that the choice of the root of T ⇤ might be signifi-
cant.
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Problem 4.10. Using rootward computation (Section 1.1) on the dual tree, give
a simple linear-time algorithm for the following problem.

• input: a planar embedded graph G, a spanning tree T , and a vertex r

• output: a table that, for each nontree edge uv of G, gives the least common
ancestor of u and v in T rooted at r

Problem 4.11. Using the result of Problem 4.10, give a simple linear-time
algorithm for the following problem.

• input: a planar embedded graph G with edge-weights and a spanning tree
T

• output: a table that, for each nontree edge e of G, gives the total weight
of the fundamental cycle of e with respect to T .

Problem 4.12. Show that a connected planar graph G with edge-weights can
be represented so as to support the following operations in O(log n) amortized
time:

• Given an edge e of G, determine whether e is in a minimum-weight span-
ning tree of G.

• Given an edge e of G and a number �, set the weight of e to �.

4.6 Simple-cut/simple-cycle duality

Lemma 4.6.1 (Fundamental-Cut/Fundamental-Cycle Duality). Let G be a
connected planar embedded graph with spanning tree T and let ê be an edge
of T . Then

{darts of the fundamental cut of ê in G with respect to T}
= {darts of the fundamental cycle of ê in G⇤ with respect to T ⇤}

Proof. Let C⇤ be the fundamental cycle of ê in G⇤ with respect to T ⇤. As in
the proof of Lemma 4.5.1, we write ⌘(C⇤) in terms of the fundamental cut basis
of G with respect to T :

⌘(C⇤) =
X

e2T

↵e⌘(fundamental cut of e)

Since di↵erent edges are not in each other’s fundamental cuts, for each edge
e 2 T , if ↵e 6= 0 then ⌘(C⇤) assigns nonzero values to the darts of e. However,
the only edge of T with darts in C⇤ is ê, so the sum in the right-hand side
is just ↵ê⌘(fundamental cut of ê). Furthermore, since the primary dart of ê
is assigned 1 by both ⌘(C⇤) and ⌘(fundamental cut of ê), we conclude that
↵ê = 1. Thus ⌘(C⇤) = ⌘(fundamental cut of ê), which proves the lemma.
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Theorem 4.6.2 (Simple-Cycle/Simple-Cut Theorem). Let G be a planar em-
bedded graph. A nonempty set of darts forms a simple cycle in G⇤ i↵ the set
forms a simple cut in G.

Proof. We prove the theorem for the case in which G is connected. The result
immediately follows for disconnected graphs as well.

(only if) Let C⇤ be a simple cycle in G⇤. Let ê be an edge of C⇤, and let P ⇤ be
the simple path in G⇤ such that C⇤ = P ⇤ � ê. By the matroid property of forests
(Corollary 3.1.3), there exists a spanning tree T ⇤ of G⇤ containing the edges of
P ⇤. Note that C⇤ is the fundamental cycle of ê with respect to T ⇤. Therefore, by
Fundamental-Cut/Fundamental-Cycle Duality (Lemma 4.6.1), the darts form-
ing C⇤ are the darts forming a fundamental cut in G, and such a cut is a simple
cut by the Fundamental-Cut Lemma (Lemma 3.2.1).

(if) Let S1 be a set of vertices of G such that ~�G(S1) is a simple cut. Let
S2 = V (G) � S1. By definition of simple cut in a connected graph, for i = 1, 2,
the vertices of Si are connected; let Ti be a tree connecting exactly the vertices
of Si. Let d be a primary dart such that d is in ~�(S1) or ~�(S2), and let e be

the edge of d. Let T = T1 [ T2 [ {e}. Then ~�(S1) or ~�(S2) is a fundamental
cut with respect to T , and so by Fundamental-Cut/Fundamental-Cycle Duality
(Lemma 4.6.1), its darts form a simple cycle in G⇤.

4.6.1 Compressing self-loops

Figure 4.1 shows some examples of compressing edges.

Figure 4.1: Examples of compressing an edge ê in G (solid lines and filled
vertices), i.e. deleting ê from G⇤ (dashed lines and open vertices).

Compressing a self-loop in a planar embedded graph is an interesting opera-
tion. The graph can be divided into two parts, the part enclosed by the self-loop
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and the part not enclosed. These parts have only one vertex in common, namely
the endpoint of the self-loop. Compression has the e↵ect of duplicating the com-
mon vertex, and attaching each part to its own copy.

The Simple-Cycle/Simple-Cut Theorem immediately yields the following.

Corollary 4.6.3. If e is a self-loop in a planar embedded graph G then e is a
cut-edge in G⇤.

We use the corollary to help analyze the e↵ect of compressing a self-loop in
a planar graph.

Lemma 4.6.4. If G is a planar embedded graph and e is a self-loop then G/e
is planar.

Proof. Let n, m, �,  be the number of vertices, edges, faces, and connected
components of G. By planarity, n � m + � � 2 = 0. Let n0, m0, �0, 0 be the
numbers for G0 = dual(G⇤ � e). In order to prove that G0 is planar, it su�ces
to show that n0 � m0 + �0 � 20 = n � m + � � 2.

Clearly m0 = m � 1. By Corollary 4.6.3, e is a cut-edge in G⇤.
First suppose each endpoint of e in G⇤ has degree greater than one. In

this case, deletion of e does not cause the elimination of its endpoints in G⇤.
Therefore �0 = �. Since e is a cut-edge, deleting it increases the number of
connected components, so 0 =  + 1 (using the Connectivity Corollary, which
is Corollary 3.4.5). Let v be the common endpoint of the self-loop e in G, and
let the corresponding permutation cycle be (d0 d1 · · · dk · · · d`), where d0 and
dk are the darts corresponding to e. In G⇤, v is a face. Deletion of e in G⇤

breaks the face up into (d0 d1 · · · dk�1) and (dk+1 · · · d`) and leaves all other
faces alone. Since faces of G⇤ are vertices of G, we infer n0 = n + 1. Thus

n0 � m0 + �0 � 20 = (n + 1) � (m � 1) � � � 2( + 1) = n � m � � � 2

If exactly one of the endpoints of e in G⇤ has degree one, that endpoint will
disappear when e is deleted, so �0 = ��1, and there is no change to the number
of connected components. In this case,

n0 � m0 + �0 � 20 = n � (m � 1) + (� � 1) � 2 = n � m + � � 2

If both endpoints of e in G⇤ have degree one, deleting e eliminates both
endpoints (vertices of G⇤), a connected component, and a face of G⇤, so �0 =
� � 2, 0 =  � 1, and n0 = n � 1.

n0 � m0 + �0 � 20 = (n � 1) � (m � 1) + (� � 2) � 2( � 1) = n � m + � � 2

4.6.2 Compression and deletion preserve planarity

Combining Lemma 4.6.4 with Lemma 4.2.1 shows that compression preserves
planarity. Since compression in the dual is deletion in the primal, it follows that
deletion preserves planarity. We state these results as follows

Theorem 4.6.5. For a planar embedded graph G and an edge e, G�e and G/e
are planar embedded graphs.
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4.7 Left, right, and Crossings

4.7.1 Emanating and entering from left and right

Let W be a walk, and let a and b be two consecutive darts of W . Let c be a
dart with head(c) = head(a). We say that c enters W from the right (left) if
the permutation cycle at head(c) induces the cycle a c rev(b) (a rev(b) c). We
say that c emanates right (left) of W if rev(c) enters W from the right (left).
We say that a walk W 0 enters W from the right (left) at head(a) if there is a
dart c of W 0 with head(c) = head(a) that enters W from the right (left).

4.7.2 Crossing walks

Two kinds of crossing: sets that cross (violate laminarity) and paths/cycles that
cross in a graph sense. Here we mean the latter.

Let W be a (possibly empty) walk, and let P = a W b and Q = c W d be
walks that are identical except for their first and last darts. We say that Q and
P form a crossing configuration if c enters P from the left and d emanates right
of P or if c enters P from the right and d emanates left of P .

We say a walk P crosses a walk Q if a subwalk of P and a subwalk of Q
form a crossing configuration.

4.8 Faces, edges, and vertices enclosed by a non-
self-crossing cycle

A path P of darts is non-self-crossing if it does not form a crossing configuration
with itself.

Let C be a non-self-crossing cycle of darts in a connected plane graph G⇡.
The set of faces not enclosed by C is the set F of faces such that C = ~�G⇤(F ).
All other faces of G are enclosed by C.

Sometimes we wish to discuss enclosure with respect to a simple cycle of
edges C. To break the symmetry we use an arbitrary face, f1, designated the
infinite face of G⇡. We the say the cycle C encloses a face f with respect to f1
if E(C) = �(S) where f 2 S, f1 62 S.

The following definitions apply both in the directed case and in the undi-
rected case. Using the Path/Cut Lemma (Lemma 3.2.3), we immediately obtain

Proposition 4.8.1. Let G⇡ be a connected plane graph, and let C be a cycle
of G⇡. Every path in G⇤ from a face not enclosed by C to a face enclosed by C
goes through an edge of C.

We say C encloses a vertex (an edge) if C encloses a face whose boundary
contains the vertex (a dart of the edge), and strictly encloses the edge or vertex
if in addition the vertex is not on C (no dart of the edge is on C).

Using Proposition 4.8.1 and Corollary 3.4.4, we obtain
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Proposition 4.8.2. Let G⇡ be a connected plane graph, and let C be a cycle of
G⇡. Every path in G from a vertex not enclosed by C to a vertex enclosed by C
goes through a vertex of C.

Problem 4.13. Let C be a non-self-crossing cycle. Prove that if dart d is
strictly enclosed by C and tail(d) is a vertex of C then d emanates right of C.

The interior of a cycle C is the subgraph consisting of edges and vertices
enclosed by C. The exterior is the subgraph consisting of edges and vertices not
strictly enclosed by C. The strict interior and exterior are similarly defined.

4.9 Trimming

Let C = d1, d2, . . . , dk be a non-self-crossing cycle of darts in a plane graph
G = (⇡, E). The operation of trimming G along C produces a new graph G0 =
(⇡0, E0). Informally, this operation can be described by imagining a drawing
of G on a piece of paper, cutting the paper with scissors along the cycle C,
and keeping only the part of G that is enclosed by the cycle C. Formally, let
ER be the set of arcs of G that are strictly enclosed of C. The set of arcs
E0 of G0 is ER

S
[k
i=1ei. That is, E0 consists of ER and of a new arc ei for

every dart di of C. Let ⇡⇤
|R be the restriction of ⇡⇤ to the orbits of the faces

of G that are enclosed C. Let (⇡0)⇤ be the permutation obtained from ⇡⇤
|R

by replacing every dart di of C with the dart (ei, 1), and adding the orbit
((ek, �1), (ek�1, �1), (dk�2, �1) . . . (e1, �1)). The permutation ⇡0 is defined by
⇡0 = (⇡0)⇤⇤. See Fig. 4.2 for an illustration.

Figure 4.2: Trimming along a non-simple non-self-crossing cycle. Top: before
trimming along the blue counterclockwise (left) and counterclockwise (right)
non-self-crossing cycle of darts. Bottom: after trimming.
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We extend the definition to trimming along a tree of edges in G. The Euler
tour of T is a non-self-crossing cycle of darts C in which each dart of each edge
of T appears exactly once, and such that, for any two consecutive darts d, d0

of C, the first dart of C that appears after d in the orbit of head(d) is rev(d0).
Trimming along T is defined as trimming along the Euler tour of T . See Fig. 4.3.

P

Figure 4.3: Trimming along a path P (blue edges). Top: before trimming.
Bottom: after trimming.

4.10 Biconnectivity

A graph is biconnected if every pair of edges belong to some simple cycle.

Lemma 4.10.1. If a planar embedded graph G is biconnected then so is the
planar dual G⇤.

Proof. Let e, e0 be a pair of edges. Let C be a simple cycle containing e and e0. C
exists since G is biconnected. By the Simple-Cycle/Simple-Cut (Theorem 4.6.2),
C is a simple cut in G⇤. Let p and p0 be disjoint simple paths between the
endpoints of e and e0 in each side of the cut in G⇤. Thus, e�p�e0 �p0 is a simple
cycle in G⇤, so G⇤ is biconnected.

Lemma 4.10.2. If G is a planar embedded biconnected graph then every face
is a simple cycle.
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Proof. Assume some face f of G is not a simple cycle. Let d1, d2, . . . be the
darts of f . Since f is not a simple cycle, there exists a vertex v and indices
i < j < k such that v = tail(di) = head(dj) = tail(dj+1) = head(dk). Choose
such i, j, k that minimize k � i (i.e., j is the only index between i and k whose
head or tail is v). Contract all the darts di+1 . . . dk�1, so that now tail(di) =
head(di) = tail(dk) = head(dk). In the resulting graph, the edges ei of di and ek
of dk are both self loops incident to v, so they belong to no simple cycle. Since
the only edges contracted are those of the non simple cycle f , uncontracting
these edges does not introduce a simple cycle containing both ei and ek. Hence
G is not biconnected.

4.11 Representing embedded graphs in imple-
mentations

It makes sense to base our computer representation of embedded graphs on the
mathematical representation. We will even use this representation when we
don’t care about the embedding.

For the purpose of specifying algorithms, our finite set E will consist of
positive integers. For example, if |E| = m then we can use the integers 1 . . . m.
We also need a way to represent darts, remembering that each element of E
corresponds to two darts. We use some convention to represent each dart as an
integer. (Two ways: use +/- or use a low-order bit). A permutation ⇡ of darts
is represented by a pair of arrays, one for the forward direction and one for the
backward direction. That way, it takes O(1) time to go from a dart d to the
darts ⇡[d] and ⇡�1[d].

We also have to discuss the implementation of arc deletion. It will be nec-
essary to delete arcs in constant time. The key is to allow some integers to
become unused.

Deletion of an arc consists of deletion of its two darts from the representation
of the permutation ⇡.
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