
Chapter 18

Appendix: Splay trees and
link-cut trees

In this Chapter we provide data structures for representing weighted sequences
and weighted trees. These data structures are used in Chapters 7 and 10. In
fact, the set of operations supported by the data structures we describe is more
general than those required by the algorithms in this book.

We start by stating a theorem on representing disjoint sequences.

Theorem 18.0.1. There is a data structure that, for a finite n-element set
Ω, represents a set of disjoint sequences consisting of the elements of Ω and
an assignment of weights to these elements. The data structure has size O(n)
and supports each of the following operations in O(log n) amortized time per
operation:

• First(x): return the first element of the sequence containing x.

• Last(x): return the last element of the sequence containing x.

• Split(x): split the sequence σ containing x into two sequences σ[·, x) and
σ[x, ·].

• Concatenate(x, y): assuming x and y belong to distinct sequences σ1
and σ2, replace those sequences with the sequence σ1σ2.

• GetWeight(x): return the weight of element x.

• AddToRange(x, y, β): assuming x and y belong to a sequence σ, add β
to the weights of all elements of the substring σ[x, y].

• Reverse(x, y): assuming x and y belong to a sequence σ, modify σ by
replacing the substring σ[x, y] with its reverse.

• MinRange(x, y): assuming x and y belong to a sequence σ, return the
leftmost element with minimum weight in the substring σ[x, y].
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• FindWeight(x, y, λ): return the leftmost element with weight at most λ
in the substring σ[x, y].

The proof of this theorem appears in Sections 18.1 and 18.2.
Next we state a theorem on representing disjoint rooted trees.

Theorem 18.0.2. There is a data structure, that, for a finite n-element set Ω,
represents a collection of disjoint rooted trees whose nodes are the elements of
Ω, and an assignment of weights to these elements. The data structure has size
O(n) and supports each of the following operations in O(log n) amortized time
per operation:

• Root(u): given a node u, return the root of the tree containing u.

• Cut(u): given a node u that is not a root in F , remove its parent edge,
making u the root of its subtree.

• Link(u, v): given two vertices u, v in different trees of F such that u is
the root of its tree, add the edge uv, making u a child of v.

• Evert(u): make u the root of the tree containing u.

• GetWeight(u): return the weight of node u.

• AddToDescendants(u, α): add α to the weights of all the descendants
of u.

• AddToAncestors(u, α): add α to the weights of all the ancestors of u.

• AncestorFindMin(u,dir): given a node u and a direction dir∈{root,
leaf}, find the dirmost minimum-weight ancestor of u.

• DescendantFindMin(u,dir): given a node u and a direction dir∈{root,
leaf}, find the dirmost minimum-weight descendant of u.

• AncestorFindWeight(u, α, dir): given a node u, a number α, and a
direction dir∈{root, leaf}, return the dirmost ancestor of u having weight
at most α, or null if there is no such ancestor.

• DescendantFindWeight(u, α, dir): given a node u, a number α, and
a direction dir∈{root, leaf}, return the dirmost descendant of u having
weight at most α, or null if there is no such descendant.

The proof of the theorem starts in Section 18.3.
Theorem 18.0.2 can be used as a black box to support edge weights w : E →

R. This can be done by adding an artificial node ve in the middle of each edge
e, and storing the weight w(e) of e in the artificial node ve (the weight of the
non-artificial nodes is set to a sufficiently large value so they do not affect any
of the operations).

For some applications such as MSSP and single-source single-sink maximum
flow, one needs a variant of Theorem 18.0.2 that supports dart weights. In



18.1. BINARY SEARCH TREES 251

this variant, operations/queries on ancestors/descendants additionally specify
whether they relate to the rootward darts or to the leafward darts of the ances-
tor/descendant edges. Without Evert, this can be easily supported by stor-
ing two weights for each edge, one for each dart. Supporting this variant with
Evert(u) is less trivial, because eversion swaps the leafward and rootward darts
along the path from the new root u to the old root. We shall explain how to
implement this variant in a non black-box manner after proving theorem 18.0.2.

Problem 18.1. Show how to use Lemma 18.0.2 to support in log n time the
operation LCA(u, v), which returns the lowest common ancestor of nodes u and
v that belong to the same tree in F .

18.1 Binary Search Trees

The proof of Theorem 18.0.1 is based on binary search trees. A binary search
tree (BST) is a rooted binary tree in which each nonroot node x is designated
as either its parent’s left child or its parent’s right child. (Each node has at most
one left child and at most one right child.)

Such a tree T defines a total order on its vertices, called BST order (or
symmetric order and inorder). Intuitively, the order is left-to-right. Formally,
we inductively define BST order as follows. The BST sequence for an empty
tree is the empty sequence. For a nonempty tree T , the BST sequence consists
of the BST sequence of the left subtree of T (if there is such a subtree) followed
by the root of T followed by the BST sequence of the right subtree (if there is
such a subtree).

BSTs are often presented as data structures for representing dictionaries,
but they are also useful for representing sequences. To represent a sequence σ
over some finite set S, we use a BST whose vertices are the elements of S; the
BST order gives the sequence σ.

The non-uniqueness of the representation turns out to be very useful. This
is a recurring theme in computer science.

A BST can be implemented using three mappings from S to S: parent(·),
left(·), and right(·).

Often it is useful to represent an assignment w(·) of weights to the elements
of S. The next section introduces a useful way to represent such an assignment.

18.1.1 Delta Representation of weights

Rather than store explicit values at each node representing the item’s weight,
the data structure uses an implicit representation. It represents the weight of
node u by storing the difference ∆w[u] between the node’s weight and that of
its parent. If the node is the root then ∆w[u] is assigned the weight of u itself.
Thus the following invariant holds:
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Delta invariant: For each node u, w(u) =
∑
v ∆w[v], where the sum is over

the ancestors of u.

Refer to Figure 18.1 for an example.
This representation allows the data structure to efficiently perform an op-

eration that adds to the weights of many vertices at a time. To add β to the
weights of all the descendants of a node v, add β to ∆w[v].
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Figure 18.1: A BST with node-weights. The weight of each node is indicated
by w. The difference between w for a node and w for its parent is indicated by
∆w. Note that, for each node, w for that node can be computed by summing
∆w over all the ancestors of that node.

We use the term decoration to refer to additional field associated with each
node.

18.1.2 Supporting searches for small weight

We can augment the BST to support queries such as this:

SearchLeftmost(λ): What is the leftmost element x in σ whose
weight w(x) is no more than λ?

To support such queries, we define minw(·) so that, for each node v, minw(v) is
the minimum weight assigned to a descendant of v.

Note that, for a node v with children v1, . . . , vk (k ≤ 2),

minw(v) = min{w(v),min
i

minw(vi)} (18.1)

This equation will be useful in updating minw(v) when v’s children change.

Problem 18.2. Write pseudocode in terms of minw(·) for
SearchLeftmost(λ). The time required should be proportional to the
depth of the tree.
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Figure 18.2: The weight of each node is indicated by w. The minimum weight
of the subtree rooted at a node is indicated by minw.

18.1.3 Delta Representation of min-weights

The implicit representation of minw(·) builds on the implicit representation of
w(·). We label the vertices using ∆minw[·] so that the following invariant is
satisfied:

Delta min invariant: For each node u, minw(u) = ∆minw[u] +
w(u)

Refer to Figure 18.3.
When we add β to the weights of descendants of u by adding β to ∆w[u],

the Delta min invariant is automatically maintained.
Altering the structure of a BST in such a way as to change the descendants

of u changes minw(u), so ∆minw[u] must be updated. Now we derive the rule
for the update. Let ŵ be the weight of the parent of u, or zero if u has no
parent. Let u1, . . . , uk be the children of u.

minw(u) = min{w(u),minw(u1), . . . ,minw(uk)}
∆minw(u) = minw(u)− w(u)

= min{w(u)− w(u),minw(u1)− w(u), . . . ,minw(uk)− w(u)}
= min{0, (∆minw[u1] + w(u1))− w(u), . . . , (∆minw[uk] + w(uk))− w(u)}
= min{0,∆minw[u1] + ∆w[u1], . . . ,∆minw[uk] + ∆w[uk]} (18.2)

18.1.4 Delta representation of left-right

Suppose that, in our representation of a sequence σ using a BST, we wish to
quickly reverse the consecutive subsequence induced by the descendants of a
node. For example, the BST in Figures 18.2 and 18.1 represents the sequence
ABCDEFGHI. We wish to modify this sequence by reversing the subsequence
FGHI, obtaining ABCDEIHGF .
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Figure 18.3: The minimum weight of the subtree rooted at a node is indicated
by minw. The weight of each node is indicated by w. The difference between
minw and w for a node is indicated by ∆minw.

To support such modifications, we use a delta representation of left and
right. We associate with each node a two-element array, indexed by 0 and
1. A binary value flipped associated with each node signifies which element of
the array gives the left child of that node. Instead of explicitly representing
flipped(v) at each node, we explicitly represent ∆flipped[v], which is defined as
flipped(v) − flipped(parent(v)) where the subtraction is mod 2. Therefore for
each node v the value of flipped(v) is the sum of ∆flipped[x] over all ancestors x
of v, where the sum is mod 2.

To reverse the order among the descendants of a node v, we add one (mod 2)
to ∆flipped[v].

18.1.5 Rotation: An order-preserving structural change
to a binary search tree

A binary search tree can be structurally changed by rotating a node up in the
tree. For example, for any node x in a BST there is a series of rotations that
results in x being the root. See Figure 18.4. Rotation preserves the BST order.
We will later describe a rule for carrying out rotations that enables us to get
good time bounds for binary-tree operations.

18.1.6 Updating Delta representations in a rotation

Since Delta representations depend on the structure of a BST, these must be
updated when a rotation takes place.

Refer to Figure 18.5. As shown there, let b be the root of the subtree labeled
B. Let ŵ be the weight of the parent of y (or zero, if y has no parent).
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Figure 18.4: Starting with the tree on the left, rotating x up yields the tree on
the right. Starting with the tree on the right, rotating y up yields the tree on
the left. The triangles represent subtrees that are not changed by the rotation.
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Figure 18.5: This figure helps us derive the rule for updating Delta representa-
tions in a rotation.

We have the following equations.

w(y) = ∆w[y] + ŵ

w(x) = ∆w[x] + ∆w[y] + ŵ

w(b) = ∆w[b] + w(x)

Now consider the tree resulting from rotating x, which appears on the right in
Figure 18.4. Note that the parent of x in this tree is the parent of y in the tree
on the left. Using ∆w′[·] to denote the values of the ∆w decorations in this tree,
we have the following equations.

w(x) = ∆w′[x] + ŵ

w(y) = ∆w′[y] + w(x)

w(b) = ∆w′[b] + w(y)
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We can use the equations to derive rules for updating the ∆w(·) decorations:

∆w′[x] = w(x)− ŵ
= ∆w[x] + ∆w[y]

∆w′[y] = w(y)− w(x)

= −∆w[x]

∆w′[b] = w(b)− w(y)

= ∆w[b] + ∆w[x]

leading to the update

∆w′[x],∆w′[y],∆w′[b] = ∆w[x] + ∆w[y],−∆w[x],∆w[b] + ∆w[x]

The same technique can be used for preserving flipped(·).

18.1.7 Updating ∆minw representations in a rotation

The rotation changes the descendants of x and y. Therefore, after the updates
to ∆w[·] have been made, if ∆minw[·] is being maintained then ∆minw[x] and
∆minw[y] must be updated using Equation 18.2.

18.2 Splay trees

In moving x to the root, there is some freedom in selecting the rotations. The
splay tree data structure [Sleator and Tarjan, 1985] specifies some rules for se-
lecting these rotations so as to ensure that the time required is small. Moving a
node x to the root following these rules is called splaying x to the root. We will
prove a theorem that implies a bound on the total number of rotations required
for many such splayings. Each rotation can be done in constant time, so we will
obtain a time bound.

We define three operations performed on a node x in a BST, called splay
operations. Each splay operation consists of one or two rotations, and each
operation moves the node x closer to the root. Which operation should be
applied depends on the relationship between x and its parent and grandparent
(if they exist).

• If x has no grandparent and is the left child of its parent, we perform a
zig operation, which simply rotates x up. (See Figure 18.6.)

• Suppose x has a grandparent. If x is the left child of its parent and its
parent is the left child of its grandparent, or if x is the right child of its
parent and its parent is the right child of its grandparent, we perform a
zig-zig operation: first rotate up the parent of x and then rotate up x.
(See Figure 18.7.)
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Figure 18.7: The zig-zig step.

• If x is the left child of its parent and its parent is the right child of its
grandparent, or vice versa, we perform a zig-zag operation: first rotate up
x and then again rotate up x. (See Figure 18.8.)

Splaying a node x to the root consists of repeatedly applying the applicable
splay operation until x is the root.

18.2.1 Potential Functions for Amortized Analysis

The analysis of splay trees will show that each operation takes amortizedO(log n)
time: over a sequence of many operations on the tree, the average time per op-
eration is O(log n). Each individual operation can take O(n) time in the worst
case.
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Figure 18.8: The zig-zag step
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To perform this analysis we will associate a potential Φ with the state of the
current tree. As is traditional in analyses of this kind, Φ is chosen in a way that
it is bounded initially (by an amount that will be useful in the analysis of the
running time) and always remains nonnegative.

The actual cost of an operation is defined so as to be a constant times the
actual time required to perform the operation. The virtual cost is the actual
cost plus the change in potential: ∆Φ = Φ(after) − Φ(before). Summing the
virtual costs over a (long) sequence of operations to the tree gives:

∑
virtual costs =

∑
actual costs +

∑
∆Φ

=
∑

actual costs + Φ(finally)− Φ(initially)

where the last step is obtained by telescoping the sum
∑

∆Φ. Therefore the
total actual cost is bounded as

∑
actual costs =

∑
virtual costs + Φ(initially)− Φ(finally)

≤
∑

virtual costs + Φ(initially)

using the fact that Φ(finally) is nonnegative.

18.2.2 Analysis of splay trees

A function f : [α, β] −→ R is monotone nondecreasing if f(x) ≤ f(y) for all
x ≤ y.

Fact 18.2.1. If the first derivative of f is nonnegative then the function is
monotone nondecreasing.

A continuous function f : [α, β] −→ R is concave if f(x)+f(y)
2 ≤ f(x+y2 ) for

all x, y ∈ [α, β] (i.e. if the average of the images of x and y under f is at most
the image of the average of x and y).

Fact 18.2.2. If the second derivative of a function is nonpositive over some
interval then the function is concave over that interval.

For example, a little calculus shows that log x and
√
x are monotone nonde-

creasing and concave.

Lemma 18.2.3. max{log u+ log v : u, v ≥ 0, u+ v ≤ 1} ≤ −2

Proof. Applying the definition of concavity with x = 2u, y = 2v, we obtain

log(2u) + log(2v)

2
≤ log(u+ v)

Applying the definition of monotonicity with x = u+ v and y = 1, we obtain

log(u+ v) ≤ log(1)
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These two inequalities yield

2 + log u+ log v ≤ 0

Define the rank of a node in a BST to be the base-2 logarithm of the number
of descendants of that node. We denote the rank of x in T by r(x, T ). Define
the potential of a BST T to be the sum of the ranks of its vertices. We denote
the potential of T by Φ(T ).

Define the actual cost of a splay operation to be the number of rotations it
performs, i.e. 1 for a zig operation and 2 for a zig-zig operation and a zig-zag
operation. Define the virtual cost of a splay operation to be the actual cost plus
the resulting change in the potential in the BST.

Lemma 18.2.4. Let T be a BST, and let x be a nonroot node. Let T ′ be the
BST resulting from performing a single splay operation on x.

• If the operation was a zig, the virtual cost of the operation is at most
1 + 3(r(x, T ′)− r(x, T )).

• Otherwise, the virtual cost is at most 3(r(x, T ′)− r(x, T )).

Proof. For brevity, we denote r(x, T ) by r(x) and r(x, T ′) by r′(x). We denote
the parent of x by y. If x has a grandparent, we denote it by z.

zig: The virtual cost is given by:

1 + Φ(T ′)− Φ(T ) = 1 + r′(x)− r(x) + r′(y)− r(y)
≤ 1 + r′(x)− r(x) since r′(y) < r(y)
≤ 1 + 3(r′(x)− r(x)) since r′(x) > r(x)

zig-zig: The virtual cost is given by:

2 + Φ(T ′)− Φ(T ) = 2 + r′(x) + r′(y) + r′(z)− r(x)− r(y)− r(z)
= 2 + r′(y) + r′(z)− r(x)− r(y) since r′(x) = r(z)
≤ 2 + r′(x) + r′(z)− r(x)− r(x) since r′(y) ≤ r′(x) and r(y) ≥ r(x)

The following inequalities are equivalent:

2 + r′(x) + r′(z)− r(x)− r(x) ≤ 3(r′(x)− r(x))
⇐⇒ 2 ≤ 2r′(x)− r′(z)− r(x)
⇐⇒ −2 ≥ −2r′(x) + r′(z) + r(x)
⇐⇒ −2 ≥ r(x)− r′(x) + r′(z)− r′(x)

For a node v, let D(v) be the set of descendants of v in T , and let D′(v) be
the set of descendants in T ′. By the definition of rank, the last inequality is
equivalent to

−2 ≥ log
|D(x)|
|D′(x)| + log

|D′(z)|
|D′(x)|
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Since D(x) ∪ D′(z) ⊆ D′(x) and D(x) ∩ D′(z) = ∅, |D(x)|
|D′(x)| + |D′(z)|

|D′(x)| ≤ 1.

Lemma 18.2.3 therefore implies that log
(
d(x)
d′(x)

)
+ log

(
d′(z)
d′(x)

)
≤ −2.

zig-zag: The virtual cost is given by:

2 + Φ(T ′)− Φ(T ) = 2 + r′(x) + r′(y) + r′(z)− r(x)− r(y)− r(z)
= 2 + r′(y) + r′(z)− r(x)− r(y)

since r′(x) = r(z)
≤ 2 + r′(y) + r′(z)− 2r(x)

since r(y) > r(x)

2 + r′(y) + r′(z)− 2r(x) ≤ 2(r′(x)− r(x))
⇐⇒ 2 ≤ 2r′(x)− r′(y)− r′(z)
⇐⇒ −2 ≥ r′(y)− r′(x) + r′(z)− r′(x)

⇐⇒ −2 ≥ log d(x)
d′(x) + log d′(z)

d′(x)

The last line is true by the same argument used for the zig-zig case.

Corollary 18.2.5. Let T be a BST, and let x be a nonroot node. Let T ′ be
the BST resulting from splaying x to the root. The total virtual cost at most
3(r(x, T ′)− r(x, T )) + 1.

Proof. Suppose k splay steps are required to splay x to the root. If there is any
zig step, it is the last step. For i = 0, 1, . . . , k, let ri be the rank of x after i splay
steps. For i < k, the virtual cost of the ith splay step is at most 3(ri − ri−1).
For i = k, the virtual cost is at most 3(ri − ri−1) + 1. Using telescoping sums,
we infer that the total is 3(rk − r0) + 1.

This can already be used to show a bound of O(n log n) on the actual cost
of n splay operations on trees over n elements. However, in the data structure
described in the next section, we use the specific form of the bound stated in
Corollary 18.2.5.

The above discussion of splay trees and Delta-representation of w(·) and of
minw can be easily used to prove Theorem 18.0.1.

Problem 18.3. Prove Theorem 18.0.1 using splay trees with ∆ representations
of w(·) and minw(·).
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Problem 18.4. In this problem, we discuss a data structure that supports some
interesting tree operations (but is simpler than the data structure we describe in
the next section).

Corresponding to each edge of a graph, there are two darts, one oriented in
each direction. (Darts will come up often in the remainder of the book.)

Given any tree (indeed, any connected graph), there is a closed path that
uses every dart exactly once. (There might be many such paths.) We represent
a tree by the sequence σ of darts, and we represent the sequence σ by a splay
tree whose vertices are the darts.

We represent a rooted forest by a set of such splay trees, one for each tree.
Give pseudocode for each of the following operations, and then show that the
amortized time per operation is O(log n) where n is the maximum number of
edges.

• remove(e): remove an edge e from the forest.

• add(e, d1, d2): add an edge e to the forest between the tail of dart d1 and
the tail of dart d2.

• ancestor(e1, e2): return true if the e1-to-root path in the tree containing
e1 contains e2.

Problem 18.5. Augment the data structure of Problem 18.4 to represent a
labeling d(·) of the vertices by numbers so as to support the following operations
(in addition to those specified in Problem 18.4):

• getValue(e): return the label of the child endpoint of e.

• add(e, β): add β to the label of every node in the subtree rooted at the
child endpoint of e.

18.3 Representation of link-cut trees

As we have seen, splay trees can be used for representing sequences. A sequence
corresponds in graph theory to a path. We need to represent rooted forests
more generally. We use a data structure called link-cut trees. A rooted tree is
represented as a collection of paths joined together.

To choose a representation, we will designate each edge of the tree as either
dashed or solid. The maximal paths consisting of solid edges are called solid
paths. The algorithm will maintain the property that each node has at most
one solid child edge. An example is illustrated in Figure 18.9.

The algorithm makes use of the operation of exposing a node u:

Ensure that the solid path containing u consists of all u’s ancestors
by converting dashed edges along the path to solid and solid edges
incident to the path to dashed.

The operation is illustrated in Figure 18.10.
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v

Figure 18.9: A rooted tree divided into solid paths.

uu

Expose(u)

Figure 18.10: An example of exposing a node u. The effect is that the solid
path containing u contains all of u’s ancestors. In this figure, the heavy solid
path comprises u’s ancestors.
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In preparation for the analysis of the expose operation, we define an edge
from u to its parent v to be heavy if d(u) > 1

2d(v) and light otherwise.

Lemma 18.3.1. Every node v has at most one heavy child edge and at most
blog nc light ancestor edges.

18.3.1 High-level analysis of the expose operation

Splicing a dashed edge uv means converting uv to a solid edge and converting
the other solid child edge of v (if there is one) to a dashed edge. See Figure 18.11
for an illustration.

The operation of exposing a node u can be performed by performing a series
of splices and, if u has a solid child edge, converting that edge to a dashed edge.
Define the actual cost of an expose operation to be the number of splices.

Splice

u

v

u

v

Figure 18.11: Splicing the edge uv.

Now we analyze the number of splices due to exposing u. Each splice converts
a dashed edge to solid.

number of splices

= |{edges converted from dashed to solid}|
= |{light dashed edges converted to solid}|+ |{heavy dashed edges converted to solid}|

(18.3)

By Lemma 18.3.1, at most log n splices convert a light dashed edge to solid.

Let F denote a rooted forest in which each edge is designated either solid
or dashed. Now we define the potential function, which we call ΦA. Define
ΦA(F ) = n− 1− |{heavy solid edges}|.

Lemma 18.3.2. When a node u is exposed, the number of splices plus the
increase in ΦA is at most 1 + 2 log n.
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Proof.

virtual cost = actual cost + increase in ΦA

= number of splices + |{heavy solid edges converted to dashed}|
−|{heavy dashed edges converted to solid}|

≤ number of splices + |{light dashed edges converted to solid}|
−|{heavy dashed edges converted to solid}|

= 2 · |{light dashed edges converted to solid}| by (18.3)

≤ 2 log n by Lemma 18.3.1

Now we analyze the actual costs. Using the fact that the initial value of the
potential function is at most n− 1, we obtain

Corollary 18.3.3. For trees comprising n vertices, for at least n − 1 expose
operations, the average number of splices per operation is at most 1 + 2 log n.

18.3.2 Representation of trees

We will now describe how the data structure represents a forest of rooted trees,
each decomposed into solid paths. We will use the term abstract tree to signify
one of the trees represented by the data structure. We will use the term con-
crete tree to signify a tree that the data structure uses. When we refer to a
node’s parent/children/descendants/ancestors in the concrete tree, we will use
the modifier concrete, as in concrete parent or concrete descendants.

The precise representations depends on which operations must be supported.
Two categories of operations are ancestor search and descendant search. In the
former, one searches the ancestors of a given node v, and in the latter one
searches the descendants. Another operation, eversion, allows one to change
the root.

The simplest implementation is the one supporting neither descendant search
nor eversion, so we will describe that one first. Supporting descendant search
involves introducing a new kind of node and an additional pointer per node. In
either case, eversion is supported using a Delta representation of left-right as
described in Section 18.1.4.

18.3.3 Link-cut trees that do not support descendant search

In the implementation of link-cut trees that do not support descendant search
or eversion, the abstract tree is represented by a collection of splay trees that
are linked together, as shown in Figure 18.12. Each node v has three pointer
fields: parent(v), left(v), and right(v). If eversion is to be supported, each node
v has a pointer field parent(v) and a two-element array children[·] of pointers,
and a Delta representation ∆flipped(·) of left-right.
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Abstract tree Concrete tree

Figure 18.12: On the left is a diagram of an abstract tree. On the right is the
corresponding concrete tree.

Each solid path P in the abstract tree is represented in the concrete tree
by a splay tree B over the vertices of P , called a solid tree, whose BST order
coincides with the rootward order of vertices in P . For each node v in B, left(v)
points to v’s left child in B (or has the value null if v has no left child), and
similarly for right(v). If v has a parent in B, then parent(v) points to the parent.
For a node v in B, the children of v in B are called the solid children of v.

The solid descendants of v are those concrete descendants of v that are in
the same solid tree. The non-solid descendants are those concrete descendants
of v that are not in the same solid tree.

Next we specify the value of parent(v) in the case when v is the root of
its solid tree B. There are two cases. Let x be the rootmost end of P . In
the abstract tree, either x has a parent y or x is the root. In the former case,
parent(v) is y. In the latter case, parent(v) is null.

Consider the former case. Note that y belongs to its own solid path in the
abstract tree, and left(y) and right(y) are determined by y’s position in the
corresponding solid tree. Therefore x is neither left(y) nor right(y) even though
parent(x) = y. We say in this case that x is a bastard unacknowledged child.
The node y might have many unacknowledged children.

Note also that, although x is an (unacknowledged) child of y in the concrete
tree, x is not necessarily the child of y in the abstract tree.

To summarize, each solid path in the abstract tree is represented in the
concrete tree by a solid tree, and each dashed edge xy is represented by an edge
to y from the root of the solid tree containing x.

Question 18.3.4. Write a procedure IsSolidRoot(v) that returns true if v is
the root of its solid tree.



266 CHAPTER 18. APPENDIX: SPLAY TREES AND LINK-CUT TREES

18.3.4 Implementing the expose operation for trees not
supporting descendant search

We give a procedure Expose that implements the expose operation. Since
the implementation depends only in some details on whether the link-cut trees
are to support descendant search, we will use a subroutine Expose Step that
encapsulates the differences. We will give an implementation for Expose Step
now, one that works for link-cut trees not supporting descendant search. Later
we will give another implementation for Expose Step, one that works for link-
cut trees supporting descendant search. The code for Expose will not change.

We will use the same strategy to encapsulate code related to maintaining
decoration invariants. The procedure RotateUp(u) rotates u up. It is used in
splaying, and is also called directly in Expose. When a rotation takes place,
decorations must be updated to preserve invariants. We address this issue when
discussing decorations. For now, just assume that RotateUp(u) rotates u up
as in Section 18.1.5.

The code for Expose Step includes calls to two subroutines, SolidTo-
Dashed and DashedToSolid:

• SolidToDashed(v) is called when v is the left child of the root of its
solid tree, and is about to become an unacknowledged child.

• DashedToSolid(u, v) is called when u is an unacknowledged child of v,
and is about to become its left child.

These subroutines are “hooks”. For now, you can assume that they do nothing.
Later we will give implementations that preserve invariants on decorations.

def Expose(u):
1 splay u to the root of its solid tree
2 while u is not the root of the concrete tree,
3 # now u is at the root of its solid tree.
4 Expose Step(u) # move u’s parent to root of its solid tree
5 RotateUp(u)

def Expose Step(u):
pre: u is root of its solid tree, u is not root of its concrete tree
post: u’s parent is root of its solid tree, and u is its left child
z := parent(u)
splay z to root of its solid tree
v := left(z) # v might be null
if v 6= null, SolidToDashed(v) # v is about to become an unacknowledged child of z
DashedToSolid(u, z) # u is about to become a solid child of z
left(z) := u
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18.3.5 Analysis of Expose(u) for trees not supporting de-
scendant search

We combine the technique from splay-tree analysis with the analysis in Sec-
tion 18.3.1 of the number of splices required when a node u is exposed. Recall
that ΦA = n−1−|{heavy solid edges}| is the potential function defined in Sec-
tion 18.3.1. Note that ΦA depends only on the abstract tree, which is why we
use the subscript A. Define ΦC =

∑
v r(v) where r(v) is the base-2 logarithm

of the number of descendants of v in its concrete tree. We use the subscript
C to reflect the fact that ΦC depends on the concrete tree. Define the overall
potential function to be Φ = 2ΦA+ ΦC . The time required by a call to Expose
is bounded by a constant times the number of rotations peformed. We therefore
define the actual cost of Expose(u) to be the number of rotations performed.
As usual, the virtual cost is the actual cost plus the increase in the potential
function.

Lemma 18.3.5. The virtual cost with respect to Φ of Expose(u) is at most
3 + 8 log n.

Proof. Consider a call to Expose(u), and suppose it involves k iterations. The
call does

• k+1 splayings, one in Step 1 and one in each invocation of Expose Step,

• k splicings, each done in the last step of Expose Step, and

• k additional rotations in Step 5 of Expose.

The splayings and the additional rotations do not change the abstract tree or
its decomposition into heavy paths, and so do not affect ΦA. The splicings do
not change the number of descendants of any node, and so do not affect ΦC .

Let u=v0, v1, v2, . . . , vk be the vertices splayed to the roots of their solid
trees. For each vi, let r(vi) be the rank of vi before it is splayed, and let r′(vi)
be its rank after the splaying.

By Corollary 18.2.5, the virtual cost with respect to ΦC of all the splayings
is at most

k∑

i=0

1 + 3(r′(vi)− r(vi)) (18.4)

For i = 0, 1 . . . , k−1, just after the splaying of vi, the number of descendants of
vi is less than the number of descendants of vi+1. The number of descendants of
vi+1 does not subsequently change until just before vi+1 is splayed, which shows
r′(vi) < r(vi+1). Therefore the value of (18.4) is bounded by k+ 1 + 3(r′(vk)−
r(v0)) , which in turn is bounded by k + 1 + 3 log n.

Consider the rotations in Step 5 of Expose. Let ri(u) be the rank of u after
i iterations of Step 5. As in the analysis of zig, the virtual cost with respect to
ΦC of the ith rotation is at most 1 + ri(u) − ri−1(u). Hence the total virtual
cost with respect to ΦC of these rotations is at most k+ rk(u)− r0(u), which is
bounded by k + log n.
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Thus the total virtual cost with respect to ΦC of Expose(u) is at most
2k + 1 + 4 log n. By Lemma 18.3.2, k + increase in ΦA ≤ 1 + 2 log n. Therefore
the total virtual cost with respect to Φ = 2ΦA + ΦC is at most 2(1 + 2 log n) +
(1 + 4 log n), which in turn is at most 3 + 8 log n.

In the next section, we describe two additional operations and we show that
each has virtual cost O(log n) as well.

Since Φ is always nonnegative and never exceeds 2n+n log n, the amortized
actual cost per call of m calls to Expose is at most 3+8 log n+(2n+n log n)/m.
In particular, if m ≥ n then the amortized actual cost per call is O(log n).

The following problem shows that, with care, one can ensure O(log n) actual
cost per operation amortized over even fewer operations.

Problem 18.6. Show that there is a constant d such that, for any n-node rooted
binary tree T , there is a corresponding concrete tree for which ΦC ≤ dn.

18.4 Link-cut trees that support descendant search

In order to support descendant search, a node’s unacknowledged children must
be partially acknowledged so that the tree search can descend from parent to an
unacknowledged child. Since a prolific node might have many unacknowledged
children (a common condition among celebrity vertices), they are organized us-
ing a splay tree of auxiliary vertices. We refer to these splay trees as dotted trees,
and to the vertices comprising them as dotted vertices. We refer to the original
vertices of the concrete tree, the ones representing vertices of the abstract tree,
as solid vertices.

Each node v in the concrete tree, whether a solid node or a dotted node, has
one additional pointer, middle(v). If v is a solid node, middle(v) either points
to a dotted node or is null. If v is a dotted node, middle(v) points to a solid
node.

As before, the solid vertices form splay trees, one per solid path of the
abstract tree, and these splay trees are called solid trees. The dotted vertices
also form trees, called dotted trees. The pointers parent(·), left(·), and right(·)
are used to represent these trees in the usual way. If v is the root of a dotted
tree, however, parent(v) points to a solid node y. If v is the root of a solid tree,
parent(v) points to a dotted node (unless v is the root of the abstract tree, in
which case parent(v) is null.

The dashed edges in the abstract tree correspond to dotted vertices in the
concrete tree. Consider a dashed edge uv in the abstract tree. The child u
belongs to some solid path P . In the concrete tree, just as before, the solid path
P is represented by a solid tree, a tree of solid vertices. The concrete parent
of the root of that solid tree is not v (as before) but is instead a dotted node.
That dotted node belongs to a tree of dotted vertices (a dotted tree), and the
parent of the root of that dotted tree is v.

Furthermore, middle(v) points to the root of this dotted tree, and each dot-
ted node points to the root of the corresponding solid tree, so the structure can
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Abstract tree Concrete tree
for ancestor search

Concrete tree
for descendent search

v

vv

Figure 18.13: This figure shows two concrete trees corresponding to the same
abstract tree. The middle diagram shows a concrete tree with the structure de-
scribed in Section 18.3.3. The right diagram shows a concrete tree that supports
descendant search. Each solid node has a middle pointer that either is null or
points to a dotted node, the root of a BST of dotted vertices. Each dotted node
has a middle pointer that points to a solid node. The dotted lines between the
vertices have arrowheads on both ends because these lines represent pointers in
both directions. Consider the node v of the abstract tree. It has one child in its
solid path and three children not in its solid path. In the concrete tree in the
middle diagram, v has three unacknowledged children, which are the roots of
solid trees representing solid paths. In the concrete tree in the right diagram, v
has one middle child, a dotted node, the root of a BST of dashed vertices, each
of which in turn has as its middle node the root of a solid tree.

be traversed top-down. Example illustrating a conceptual tree and its concrete
tree representatiopns are given in Figures 18.13 and 18.4.

The pseudocode for Expose Step is now as follows:

def Expose Step(u):
pre: u is root of its solid tree, u is not root of its concrete tree
post: u’s parent is root of its solid tree, and u is its left child
x := parent(u) # x is a dotted node
splay x to root of its dotted tree
z := parent(x) # v is a solid node
splay z to root of its solid tree
v := left(z) # v might be null
if v 6= null, SolidToDashed(v)
DashedToSolid(u, z)
parent(u), left(z),parent(v),middle(x) = z, u, x, v
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Figure 18.14: A conceptual tree is shown on the left. Solid and dashed edges are
indicated. The corresponding concrete tree is shown on the right. Each solid
tree is indicated by a darker gray triangle. A dotted tree that is not a singleton
is indicated by a lighter grey triangle.
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Figure 18.15: Illustration of ExposeStep(u) for the tree in Figure 18.4. The
concrete tree after splaying x and z to the root of their trees is shown on the
left. The concrete tree after the splice exchanging v and u is shown on the right.

Problem 18.7. Analyze the variant of Expose Step(u) that supports descen-
dant search.

• Write the potential function.

• Show that the virtual cost of Expose is O(log n).

Problem 18.8. Extend the result in Problem 18.6 to handle the concrete rep-
resentation that supports descendant search. That is, show that there is a con-
stant d such that, for any n-node rooted binary tree T , there is a corresponding
concrete tree consisting of solid and dotted vertices for which the value of the
potential function is at most dn.
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18.5 Topological updates in link-cut trees

Now we describe two operations that modify the structure of a tree:

• Cut(u): given a node u that is not an abstract root, remove its parent
edge from the forest, making u a root.

• Link(u, v): given two vertices u, v in different trees such that u is the root
of its tree, add the edge uv, making u a child of v.

We can implement these operations using Expose(v). Again we include
“hooks” in the code, LoseParent, LoseRight, and GainParent, that we
will later use to preserve invariants on decorations:

• LoseParent(v) is called when v is the right child of the concrete root,
and the edge from v to its parent is about to be severed.

• LoseRight(u) is called when u is the concrete root and is about to lose
its right child.

• GainParent(v, u) is called when v and u are concrete roots and v is
about to be made the right child of u.

def Cut(u):
pre: u is not the root of its abstract tree
Expose(u)
# u is root of its concrete tree, and it has a right child
LoseParent(right(u)) # right(u) is about to become root of its concrete tree
LoseRight(u) # u is about to lose a child
right(u),parent(right(u)) := null,null

def Link(u, v)
pre: u is the root of its abstract tree.
post: u is the child of v in their abstract tree.
Expose(u)
# u has no right child
Expose(v)
#v is a concrete root
GainParent(v, u) # v is about to become the right child of u
parent(v), right(u) := u, v

18.5.1 Analysis of link and cut operations

We consider the cost of the link and cut operations. In each operation, the
Expose operations have virtual cost O(log n). Cut removes a solid edge. This
causes at most an increase of 1 in ΦA and can only decrease ΦC . Thus the Cut
operation has virtual cost O(log n).
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In Link, after the Expose operations, u is the root of its concrete tree.
Therefore making v the right child of u increases the rank of v but of no other
node. This causes at most an increase of log n in ΦC and can only decrease ΦA.
Thus the Link operation has virtual cost O(log n).

18.5.2 Evert

Everting node u means making u the root of the conceptual tree. This is
achieved by making the path from the current root of the conceptual tree to
u solid, and then reversing this path. It is easy to implement Evert(u) using
Expose and the Delta representation of the binary value flipped keeping track
of the left-right order of children as described in Section 18.1.4.

def Evert(u):
Expose(u)
∆flipped(u) = (∆flipped(u) + 1) mod 2

Problem 18.9. Show that the virtual cost of Evert is O(log n).

18.6 Weight updates for link-cut trees

We now describe how to represent an assignment of weights to vertices so as to
facilitate quickly updating the weights of many vertices at a time.

We consider two operations for such bulk updates:

• AddToDescendants(u, α), which adds α to the weights of all the de-
scendants of u.

• AddToAncestors(u, α), which adds α to the weights of all the ancestors
of u.

We express the weight w(v) of each vertex as the sum of two quantities, the
contribution wd(v) of calls to AddToDescendants that affect the weight of v,
and the contribution wa(v) of calls to AddToAncestors that affect the weight
of v. For each of the above operations, we show how to represent the weights so
as to support the operation. In each case, we avoid explicitly representing the
quantities wd(·) and wa(·); Instead, we use the Delta representation of weights
described in Section 18.1.1. Each node v stores weight increments ∆wd[v] and
∆wa[v], such that the weights wd(v), wa(v) of a node v equal the sum of the
corresponding weight increments of some of its ancestors. The exact invariants
satisfied by ∆wd and ∆wa are slightly different, because the operations they
support are different. For convenience of notation we define ∆w(v) = ∆wd[v] +
∆wa[v].

18.6.1 Supporting AddToDescendants

To support AddToDescendants, we maintain the following invariant:
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For each node u, the quantity wd(u) is the sum
∑
v ∆wd[v] over all

ancestors v of u in the concrete tree.

Under this invariant, AddToDescendants is implemented as follows:

def AddToDescendants(u, α):
Expose(u)
# The concrete descendants of u that are not concrete descendants

of u’s right child are u’s abstract descendants.
∆wd[u] += α
if u has a right child, ∆wd[right(u)] −= α

To preserve the invariant, the rotation procedure RotateUp should be
modified as in Section 18.1.6. The “hook” subroutines SolidToDashed and
DashedToSolid of Section 18.3.4 don’t need to do anything since the invariant
does not distinguish between acknowledged and unacknowledged children.

To preserve the invariant during link and cut operations, we define Gain-
Parent and LoseParent as follows:

def GainParent(v, u)
pre: v and u are roots of their concrete trees

v is about to be made the right child of u
∆wd[v] -= ∆wd[u]

def LoseParent(v):
# v, the right child of the concrete root is about to be severed from parent
∆wd[v] += ∆wd[parent(v)]

18.6.2 Supporting AddToAncestors

To support AddToAncestors, we use a similar invariant:

For each node u, the quantity wa(u) is the sum
∑
v ∆wa[v] over all

ancestors v of u in u’s solid tree.

Unlike the invariant for AddToDescendants, here the sum is restricted to
solid ancestors. Under this invariant, AddToAncestors is implemented as
follows:

def AddToAncestors(u, α):
Expose(u)
# The concrete descendants of u that are not concrete descendants
# of u’s left child are u’s abstract ancestors.
∆wa[u] += α
if u has a left child, ∆wa[left(u)] -= α

The step Expose(u) ensures that the solid path containing u contains all of u’s
ancestors in the abstract tree, so these ancestors of u are exactly the descendants
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of u in its solid tree that are not descendants of its left child (if it has one).
Adding α to ∆wa(u) increases by α the weight of all descendants of u in its solid
tree, and subtracting α from ∆wa[left(u)] compensates so as to not increase the
weights of solid descendants that are not abstract ancestors.

If we had used the same invariant as we used for AddToDescendants,
adding α to ∆wa[u] in AddToAncestors(u, α) would have had the effect of
adding α to the weights of descendants of proper ancestors of u. This is why
we needed to use a different invariant.

To preserve the invariant, we define RotateUp, GainParent, and Lose-
Parent exactly as in Section 18.6.1. Since the invariant distinguishes be-
tween solid children and unacknowledged children, we must take care to pre-
serve the invariant when changing edges from solid to dashed and vice versa.
We therefore define procedures for the hooks SolidToDashed and Dashed-
ToSolid:

def SolidToDashed(u):
pre: u is solid child of root of a solid tree, about to become dashed child
∆wa[u] += ∆wa[parent(u)]

and

def DashedToSolid(u, v):
pre: u is dashed child of v, about to become solid child

v is root of a solid tree
∆wa[u] -= ∆wa[v]

18.6.3 Getting the weight of a node

The following procedure returns the weight of a given node v:

def GetWeight(v):
Expose(v)
return ∆wd[v] + ∆wa[v]

The correctness of this procedure uses the fact that, once v is the root of its
concrete tree, ∆wa[v] is wa(v) and ∆wd[v] is wd(v).

18.7 Weight searches in link-cut trees

We now discuss how to provide support for searching a tree for a low-weight
node. One form of search is to find a node with minimum weight among a set
of vertices (descendants or ancestors). We break ties by choosing the leafmost
or rootmost among those vertices of minimum weight. To indicate which tie-
breaking rule to use, we use a parameter dir, which has value either L (for
leafmost) or R (for rootmost).
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• AncestorFindMin(u, dir): given a node u and a direction dir, find the
dirmost minimum-weight ancestor of u in the conceptual tree.

• DescendantFindMin(u, dir): given a node u and a direction dir, find
the dirmost minimum-weight descendant of u in the conceptual tree.

We will see that each of the above search operations can be implemented
using one of the following two operations, which are useful in their own right:

• AncestorFindWeight(u, α, dir): given a node u, a number α, and a
direction dir, return the dirmost ancestor of u having weight at most α,
or null if there is no such ancestor.

• DescendantFindWeight(u, α, dir): given a node u, a number α, and a
direction dir, return the dirmost descendant of u having weight at most
α, or null if there is no such descendant.

The key to supporting searches is maintaining a representation of minw(·),
defined for BSTs in Section 18.1.2. Here we define minw(u) to be the minimum
weight w(v) = wd(v) + wa(v) among solid descendants v of u.

A Delta representation of minw(·) is used, as described in Section 18.1.3.
The invariant is:

Delta min invariant: For each node u, minw(u) = ∆minw[u] +
w(u)

Under what circumstances must we update the ∆minw[·] label of a node?
We first consider the procedure RotateUp. It changes the children of some
vertices, and hence the solid descendants of some vertices. In order to maintain
∆minw[·], we need to add a call to a hook, ChildChange(·), whenever the
children of a node change. Let v be a node, and let its solid children be v1, . . . , vk.
ChildChange(v) updates ∆minw[v] based on the values of v1, . . . , vk as given
in Equation 18.2. RotateUp(u) changes the children of two vertices, u and
its former parent, so ChildChange must be called twice—first for u’s former
parent (now u’s child) and second for u. We note that u and its former parent
are the only vertices whose descendants change by the rotation.

We next consider the procedure Expose. It mainly involves calls to Rota-
teUp, either directly or by splaying. In addition, it makes calls to ExposeStep(u).
Consider such a call. Let v be the parent of u. After v is splayed to the root of
its solid tree, the solid left edge of v is exchanged with the dashed parent edge
of u. As a result, minw(v) may change. To maintain the invariant, the hook
DashedToSolid(u, v) needs to also call ChildChange(v). Note that since v
is the root of its solid tree, it is the only vertex whose solid descendants change
when ExposeStep(u) is called.

The changes required to Link and cut are similar; ChildChange should
be called after u loses its right child in Cut, and after u gains v as a right child
in Link.

Finally, consider the bulk update operations AddToDescendants(u, α) or
AddToAncestors(u, α). Both procedures make a single call to Expose(u),
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making u the root of the concrete tree. Then, α is added to the weight of
u and to the weights of either all the descendants of u’s left child (in case of
AddToDescendants) or to the solid descendants of u’s right child (in case of
AddToAncestors). In each case, doing so also adds α to the minw(·) values
for the same set of vertices. Therefore no change needs to be made to ∆minw[v]
for any strict descendant v of u. We update ∆minw[u] based on the ∆minw
values of its children as given in Equation 18.2.

18.7.1 Supporting ancestor searches

FindSolid

For ancestor search, we use an auxiliary procedure SolidFind(u, α, dir) that
takes as input a node u, a number α such that

α ≥ ∆minw[u] (18.5)

and a direction dir (L or R). In this case, L signifies left and R signifies right.
The procedure returns the dirmost solid descendant v of u such that w(v) ≤
α+ w(u).

By the Delta min invariant, the precondition 18.5 is equivalent to the con-
dition

α+ w(u) ≥ minw(u) (18.6)

def SolidFind(u, α, dir):
pre: α ≥ ∆minw[u]
post: Returns the dirmost solid descendant v such that w(v) ≤ α+ w(u).

1 u1, u2 := left(u), right(u) if dir == left else right(u), left(u)
2 if u1 6= null and α−∆w[u1] ≥ ∆minw[u1],
3 return SolidFind(u1, α−∆w[u1], dir)
4 if α ≥ 0
5 splay u to the root of its solid tree
6 return u
7 return SolidFind(u2, α−∆w[u2], dir)

First we prove its correctness. By 18.6 (equivalent to the precondition) and the
definition of minw(u), there exists a solid descendant v of u such that w(v) ≤
α+ w(u). As in Step 1, define

u1, u2 := left(u), right(u) if dir == left else right(u), left(u)

One of the following cases must hold:

1. u1 has a solid descendant v of weight at most α+ w(u),

2. the weight of u itself is at most α+ w(u), or

3. u2 has a solid descendant v of weight at most α+ w(u).
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Case 1 holds if u1 6= null and minw(u1) ≤ α+w(u). By the Delta min invariant,
the latter inequality holds if ∆minw(u1) + w(u1) ≤ α + w(u), which holds
if ∆minw[u1] ≤ α + w(u) − w(u1) = α − ∆w[u1]. The condition in Step 2
therefore tests whether Case 1 holds. Moreover, if that condition holds then the
precondition for the recursive call in Step 3 is satisfied.

Case 2 holds if w(u) ≤ α + w(u), so the condition in Step 4 tests whether
this case holds.

Finally, if neither Case 1 nor Case 2 holds then Case 3 must hold, so
minw(u2) ≤ α + w(u), so ∆minw[u2] + w(u2) ≤ α + w(u), so ∆minw[u2] ≤
α − ∆w[u2]. Therefore in this case the precondition for the recursive call in
Step 7 is satisfied.

Note that, in case multiple descendants v satisfy the inequality, the dirmost
descendant is returned. The correctness of the procedure therefore follows by
induction on the depth of recursion.

Now we consider the time required by the procedure. (Note that the pro-
cedure is tail-recursive, so can easily be implemented iteratively.) The depth
of the recursion equals the depth in in the solid tree of the node returned. In
Step 5, the node returned is splayed to the root of its solid tree. We define the
actual cost of the operation to be the actual cost of this splaying. It follows that
the true running time is at most a constant times the actual cost. We know
that the virtual cost of the splaying (and therefore of the whole procedure) is
O(log n).

AncestorFindWeight and AncestorFindMin

Now we write AncestorFindWeight(u, α, dir). Recall that the goal is to
return u’s dirmost abstract ancestor whose weight is at most α. Say a node is
a candidate if it is an abstract ancestor whose weight is at most α.

First the procedure exposes u so that it is the concrete root. Its ancestors
consist of it and the solid descendants in its right subtree. The procedure next
determines whether u itself is a candidate by checking whether its weight is at
most α. Since u is the concrete root, its weight is ∆w[u].

Next the procedure checks whether the right subtree contains a candidate.
It does this by checking whether there are any vertices in the right subtree
(right(u) 6= null) and, if so, whether minw(right(u)) ≤ α. By the Delta min in-
variant, minw(right(u)) equals ∆minw[right(u)] +w(right(u)). By the invariant
for ∆w[·], w(right(u)) = ∆w[right(u)]+∆w[u], so the procedure checks whether
∆minw[right(u)] + ∆w[right(u)] + ∆w[u] ≤ α.

If u is a candidate and either we seek the leafmost candidate or there are no
candidates to the right, the procedure returns u. Otherwise, the procedure uses
SolidFind to find the dirmost candidate in the right subtree (unless the right
subtree has no candidate, in which case the procedure returns null).

def AncestorFindWeight(u, α, dir):
Expose(u)
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u is candidate := ∆w[u] ≤ α
candidate on right := (right(u) 6= null) and

(∆minw[right(u)] + ∆w[right(u)] + ∆w[u] ≤ α)
if u is candidate and (dir==L or not candidate on right),

return u
if not candidate on right, return null
return SolidFind(right(u), α−∆w[right(u)]−∆w[u], dir)

Problem 18.10. Write the procedure AncestorFindMin in terms of
SolidFind. Argue that your procedure is correct.

18.7.2 Supporting descendant searches

To support descendant searches, we use dotted vertices as described in Sec-
tion 18.4. Since the dotted vertices do not have weights, they do not need ∆w[·]
decorations. Since they do not belong to solid trees, they do not need ∆minw[·]
decorations. However, to facilitate searching among them, we do need a deco-

ration. For each dotted node x, we define m̂inw(x) to be the minimum weight

among all concrete descendants of x. For each solid node u, we define m̂inw(u)
to be the minimum weight among all concrete descendants of u that are not in
the same solid tree as u. In either case, if there are no eligible descendants, the
value is ∞.

We represent m̂inw using Delta representation, using a similar invariant to

the one of ∆wd. Each solid node u has a decoration ∆m̂inw[u] such that

The weight of m̂inw(u) of a node u is the sum
∑
v ∆m̂inw[v] over all

ancestors v of u in the concrete tree.

The decorations ∆m̂inw[u] need to be updated to maintain these invariants.
To support this we modify Expose(u) to first collect the values of w(v) and

m̂inw(v) for all nodes v along the path from the root of the concrete tree to
u. Since Expose(u) makes u the root of the concrete tree using rotations,
traversing the path from the root to u does not change the asymptotic running
time of Expose.

Calls to RotateUp only occur through calls to Expose. The only nodes
whose descendants change when Rotatup(u) is called are the former parent of

u and u itself. Hence, the only nodes whose m̂inw value might change are the

former parent of u and u, and the only nodes whose ∆m̂inw value might change
are these two nodes and their children. Note that only a constant number of
nodes are affected, and that all affected nodes are adjacent to the rotating nodes.

We first compute m̂inw(v) for each such affected node v as the minimum over

the m̂inw values of its children. We can then update the values of ∆m̂inw for

each affected node v by calculating the difference m̂inw(parent(v)) − m̂inw(v),
starting from the rootmost affected node.

Calls to Expose also change some solid and dashed edges via ExposeStep(u).
Let x, z and v be as defined in the pseudocode of ExposeStep(u). The nodes u
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and v swap roles during ExposeStep(u); The node u becomes the left acknowl-
edged child of z, and v becomes an unacknowledged child of z by becoming the
middle child of the dotted node x. See Figure 18.16. The only nodes whose

m̂inw values changes in this process are z and x. The values m̂inw(z), m̂inw(x)

can be calculated from the m̂inw values of their children, which were collected at

the beginning of the Expose operation. The ∆m̂inw of x, z and their children
can then be updated accordingly to maintain the invariant.
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Figure 18.16: Illustration of ExposeStep(u) for the tree in Figure 18.4. The
concrete tree after splaying x and z to the root of their trees is shown on the
left. The concrete tree after the splice exchanging v and u is shown on the right.

We next consider maintaining the invariant on ∆m̂inw during calls to Cut(u)
and Link(u, v). After the calling Expose, the only changes concern the root
of the concrete tree and its children, so the invariant can be updated explicitly

by calculating the m̂inw values of the affected nodes and then their new ∆m̂inw
values.

Calling AddToDescendants(u, α) first makes u the root of the concrete
tree by calling Expose(u), and then adds α to u, and to all the descendant

of u’s left child v. This increases m̂inw(w) by α for every descendant w of v,

and possibly also changes m̂inw(u). We first increase ∆m̂inw[v] by α. This

maintains the invariant on ∆m̂inw for v and its descendants. We can then then
calculate m̂inw(u) from the m̂inw value of its children, and restore the invariant

for ∆m̂inw[u] as well.

Calling AddToDescendants(u, α) first makes u the root of the concrete
tree by calling Expose(u), and then adds α to u, and to all the concrete de-

scendant of u’s right child v. This does not change m̂inw for any node, so the

invariant on ∆m̂inw is trivially maintained.

Problem 18.11. Write a procedure Find, analogous to SolidFind, that
searches among all the descendants of u, not just the solid descendants, for
the dirmost descendant having weight at most a given amount. You can assume

that m̂inw(·) is represented explicitly. Your search procedure will need to use

both m̂inw(·) and ∆ min[·].
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Problem 18.12. Write DescendantFindMin in terms of Find. You can

assume that m̂inw(·) is represented explicitly.

18.7.3 Representing trees with dart weights

For some applications such as MSSP (Chapter 7) and single-source single-sink
maximum flow (Chapter 10), one needs a variant of Theorem 18.0.2 that sup-
ports dart weights. That is, we maintain a directed tree of arcs, and each of the
two darts of each arc of the tree has its own weight. Operations and queries on
ancestors or descendants in the tree additionally specify whether they relate to
the rootward darts or to the leafward darts of the ancestor/descendant edges.
We had already mentioned at the beginning of this chapter that edge weights
can be represented by adding an artificial vertex ve in the middle of each edge
e, and storing the weight of edge e in the weight of ve (the weight of the non-
artificial nodes is set to a sufficiently large value). Maintaining dart weights
without Evert, can be easily supported by storing two weights for each arc,
one for each dart (each with its own Delta representations for ancestor and de-
scendant updates). Supporting dart weights with Evert(u) is a bit less trivial,
because eversion swaps the leafward and rootward darts along the path from
the new root u to the old root. To support dart weights with evert, each arc
e has two weights w0(e) and w1(e) (each of these weights is represented by its
own Delta representations for ancestor and descendant updates). Recall that
to implement Evert we have used the flipped decoration to keep track of the
left-right ordering within each solid tree, and that when u is everted, toggling
flipped(u) has the effect of reversing the path from the former root of the con-
ceptual tree to u. We use flipped to also determine which of the two weights
is associated with the leafward dart and which with the rootward dart. That
is, the weight of the leafward dart of e is represented by wflipped(ve)

(ve), and

the weight of the rootward dart of e is represented by wflipped(ve)+1 (mod 2)
(ve).

This way, toggling flipped(u) both reverses the path from u to the former root
and swaps the rootward and leafward darts along that path.

18.8 Chapter Notes


